Analysis of University Career Choice using Discrete Choice Models: Multinomial Logit and Hierarchical Logit Approaches
DOI:
https://doi.org/10.56294/saludcyt20252713Keywords:
discrete choice, nested logit, vocational guidance, higher educationAbstract
The study addressed the increasing complexity faced by students when selecting a university major at the Universidad de las Fuerzas Armadas – ESPE, considering the expansion of academic offerings and the changing demands of the labor market. Its objective was to identify the key determinants guiding this decision through the application of discrete choice models. The Multinomial Logit and Hierarchical Logit models were employed to examine the influence of personal, institutional, and expectation-related variables, organizing program alternatives into disciplinary categories to capture preference heterogeneity. The results showed that personal factors mainly vocation, individual interests, and long-term professional aspirations exerted the strongest influence on major selection, while institutional and economic considerations played a secondary role. The Hierarchical Logit model exhibited a superior fit compared with the Multinomial Logit model, indicating that disciplinary nesting allowed a more accurate representation of decision patterns. Additionally, expected employability and opportunities for career advancement emerged as critical motivations driving students’ choices. In conclusion, the study demonstrated that discrete choice models provided a robust methodological framework to explain educational decision-making processes, offering valuable evidence to strengthen vocational guidance, align academic programs with market demands, and support institutional planning based on empirical insights.
References
1. Nguyen AN, Taylor J. Post-high school choices: New evidence from a multinomial logit model. J Popul Econ. 2003;16(2):287-306. https://doi.org/10.1007/s001480300149 DOI: https://doi.org/10.1007/s001480300149
2. Czajkowski M, Gajderowicz T, Giergiczny M, et al. Choosing the future: Economic preferences for higher education using discrete choice experiment method. Res High Educ. 2020;61:510-539. https://doi.org/10.1007/s11162-019-09572-w DOI: https://doi.org/10.1007/s11162-019-09572-w
3. McFadden D. Multinomial and conditional logit discrete-choice models in demography. Demography. 1986;23(2):231-45. https://doi.org/10.2307/2061781 DOI: https://doi.org/10.2307/2061781
4. Hensher DA, Greene WH. The mixed logit model: the state of practice. Transp. 2003;30:133-76. https://doi.org/10.1023/A:1022558715350 DOI: https://doi.org/10.1023/A:1022558715350
5. De Blasi P, James LW, Lau JW. Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models. arXiv;2011. DOI: https://doi.org/10.3150/09-BEJ233
6. https://doi.org/10.48550/arXiv.1102.5008
7. Aptech examples. Stereotypical Logit Example. Aptech;2024. https://www.aptech.com/gauss-applications/discrete-choice/discrete-choice-example-stereotypical-multinomial-logit/
8. Gerhard Tutz , Ingrid Mauerer. Heterogeneity in general multinomial choice models. Stat Methods Appl. 2022;31:545-62.
9. Widiyanto W, Nurkhin A, Yulianto A, Daud NM. Multinomial logistic regression for the analysis of career decision style in teacher education. Eur J Educ Res. 2023;12(1):329-340. https://doi.org/10.12973/eu-jer.12.1.329 DOI: https://doi.org/10.12973/eu-jer.12.1.329
10. Liu T, Li S, Yang R, et al. Job preferences of undergraduate nursing students in eastern China: a discrete choice experiment. Hum Resour Health. 2019;17:1. https://doi.org/10.1186/s12960-018-0335-3 DOI: https://doi.org/10.1186/s12960-018-0335-3
11. Fosgerau M, Melo E, de Palma A, Shum M. Discrete choice and rational inattention: a general equivalence result. arXiv;2017. https://doi.org/10.48550/arXiv.1709.09117 DOI: https://doi.org/10.2139/ssrn.2889048
12. Martínez Martínez A, Castro Sánchez M, Zurita Ortega F, Lucena Zurita M. Choosing higher university study depending on the course, the average grade and gender. Magister. 2015;27(1):18-25. https://doi.org/10.1016/j.magis.2015.06.001 DOI: https://doi.org/10.1016/j.magis.2015.06.001
13. Martín-Nogueras AM, Llamas-Ramos I, Pérez-Robledo F, Llamas-Ramos R. Motivaciones de los estudiantes en la elección de los estudios de fisioterapia. Fisioterapia. 2023;45(Suppl 1):S54. https://doi.org/10.1016/j.ft.2023.03.049 DOI: https://doi.org/10.1016/j.ft.2023.03.049
14. San Rafael-Gutiérrez S, Arreciado-Marañón A, Bernaus-Poch E, Vers-Prat O. Factors influencing the choice of nursing studies. Enferm Clin. 2010;20(4):236-42. https://doi.org/10.1016/j.enfcli.2010.04.003 DOI: https://doi.org/10.1016/j.enfcli.2010.04.003
15. Divisón Garrote JA, Castillo Sandoval A, Carbayo Herencia JA, Simarro Rueda M, Carrasco Carrasco E, Guillén Pérez M, Muros Ortega A. Influence of the subject of Family and Community Medicine taught during the degree in medicine, in the choice of specialty. Med Fam SEMERGEN. 2025;51(4):102473. https://doi.org/10.1016/j.semerg.2025.102473 DOI: https://doi.org/10.1016/j.semerg.2025.102473
16. Aparicio S, Ramírez Hassan A, Gómez Sánchez DF. Selecting occupations to create jobs using discrete choice models: Medellin Metropolitan Area 2009. Estud Gerenc. 2013;29(129):476-84. https://doi.org/10.1016/j.estger.2013.11.013 DOI: https://doi.org/10.1016/j.estger.2013.11.013
17. San Miguel Inza F, Sánchez Iriso E, Cabasés Hita JM. Economic tools to prioritize patients on the waiting list: discrete choice experiments. Gac Sanit. 2008;22(2):90-7. https://doi.org/10.1157/13119315 DOI: https://doi.org/10.1157/13119315
18. Martínez Navarro G, Rivera-Camino J. La influencia de la comunicación comercial en el proceso decisional jerárquico: una evaluación empírica en el contexto educativo. Cuad Econ. 2008;31(86):83-116. https://doi.org/10.1016/S0210-0266(08)70026-8 DOI: https://doi.org/10.1016/S0210-0266(08)70026-8
19. Eduardo Rafael Jáuregui Romero ERJR, Alca Gómez J, Vilca Tantapoma ME, Orlando Tito Llanos Gonzales OTLG. Inteligencia artificial en la segmentación de clientes potenciales: enfoque de aprendizaje automático. Datos y Metadatos [Internet]. 1 de enero de 2024 [consultado el 13 de noviembre de 2025];3:305. https://dm.ageditor.ar/index.php/dm/article/view/303 DOI: https://doi.org/10.56294/dm2024305
20. Bonilla-Novillo SM, Jácome-Domínguez E Ángel, Moreno-Novillo Ángela C, Albuja-Jácome JE. Diseño y validación de un cuestionario sobre la percepción del aprendizaje de ecuaciones diferenciales mediante software en estudiantes universitarios. Salud, Ciencia y Tecnología [Internet]. 22 de agosto de 2024 [consultado el 13 de noviembre de 2025];4:.912. Disponible en: https://sct.ageditor.ar/index.php/sct/article/view/912 DOI: https://doi.org/10.34069/AI/2024.80.08.3
21. Benítez Blanco MC. Factores que influyen en la elección de carreras universitarias: un estudio longitudinal en el Colegio Privado Subvencionado Italiano Santo Tomás, 2024. Seminars in Medical Writing and Education [Internet]. 30 de diciembre de 2024 [consultado el 13 de noviembre de 2025];3:590. https://doi.org/10.56294/mw2024590 DOI: https://doi.org/10.56294/mw2024590
22. Villanueva Amaro NN, Ríos Ríos SW, Meneses Claudio BA. Exploración de conceptualizaciones teóricas sobre las causas del abandono escolar universitario. Seminarios en Redacción Médica y Educación [Internet]. 16 de octubre de 2022 [citado el 13 de noviembre de 2025];1:15. https://doi.org/10.56294/mw202215 DOI: https://doi.org/10.56294/mw202215
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alex Alejandro Andrango Paillacho, Rodolfo Israel Arias Arias, Luis Ronaldo Tutillo Quimbiulco (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.