Efficacy of wearable cardiac monitoring devices versus traditional methods in detecting atrial fibrillation: a systematic review and meta-analysis
DOI:
https://doi.org/10.56294/saludcyt2024.962Keywords:
Atrial Fibrillation, Electrocardiography, Wearable Electronic Devices, Diagnostic Techniques, CardiovascularAbstract
Introduction: Atrial fibrillation (AF) is a prevalent arrhythmia with significant health and economic impacts. Traditional detection methods like 12-lead ECGs and Holter monitors are effective but limited by cost and patient compliance. Wearable devices, such as smartwatches and patches, offer a promising alternative for real-time AF detection.
Objective: This systematic review aims to evaluate the efficacy of wearable cardiac monitoring devices compared to traditional methods in detecting AF.
Methods: A comprehensive literature search identified studies comparing wearable devices to traditional methods for AF detection. Data on sensitivity, specificity, and usability were extracted and analyzed. A pooled analysis using both fixed-effect and random-effects models assessed overall sensitivity and specificity.
Results: This systematic review analyzed data from 15 studies comparing wearable devices to traditional methods for AF detection. Wearable devices, including smartwatches, patch-type ECGs, and PPG-based technologies, showed high sensitivity and specificity, with the fixed-effect model estimating overall sensitivity at 91.59% and specificity at 92.13%. The random-effects model provided slightly higher sensitivity (94.03%) and specificity (95.96%). Smartwatches like the Apple Watch with KardiaBand demonstrated up to 97.5% sensitivity, comparable to insertable cardiac monitors (ICMs). Patch-type ECGs, such as MobiCARE-MC100 and Zio XT, matched Holter monitors in accuracy, with extended monitoring enhancing AF detection. PPG-based technologies, exemplified by the WATCH AF trial, showed 93.7% sensitivity and 98.2% specificity. Despite high accuracy, significant heterogeneity among studies highlighted the need for standardized protocols.
Conclusion: Wearable devices show high sensitivity and specificity for AF detection, comparable to traditional methods. However, substantial heterogeneity indicates the need for standardized protocols and further research to optimize these technologies for clinical use.
References
1. Morillo CA, Banerjee A, Perel P, Wood D, Jouven X. Atrial fibrillation: the current epidemic. J Geriatr Cardiol. 2017;14(3):195. doi:10.11909/J.ISSN.1671-5411.2017.03.011
2. Majos E, Dabrowski R. Significance and Management Strategies for Patients with Asymptomatic Atrial Fibrillation. J Atr Fibrillation. 2015;7(5):1169. doi:10.4022/JAFIB.1169
3. Lin HJ, Wolf PA, Benjamin EJ, Belanger AJ, D’Agostino RB. Newly Diagnosed Atrial Fibrillation and Acute Stroke. Stroke. 1995;26(9):1527-1530. doi:10.1161/01.STR.26.9.1527
4. Lewis M, Parker D, Weston C, Bowes M. Screening for atrial fibrillation: sensitivity and specificity of a new methodology. Br J Gen Pract. 2011;61(582):38-39. doi:10.3399/BJGP11X548956
5. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):e1-e76. doi:10.1016/J.JACC.2014.03.022
6. Curry SJ, Krist AH, Owens DK, et al. Screening for Atrial Fibrillation With Electrocardiography: US Preventive Services Task Force Recommendation Statement. JAMA. 2018;320(5):478-484. doi:10.1001/JAMA.2018.10321
7. Mandrola J, Health Louisville B, Andrew Foy K. Downsides of Detecting Atrial Fibrillation in Asymptomatic Patients. Am Fam Physician. 2019;99(6):354-355. Accessed July 20, 2024. https://www.aafp.org/pubs/afp/issues/2019/0315/p354.html
8. Turakhia MP, Kaiser DW. Transforming the care of atrial fibrillation with mobile health. J Interv Card Electrophysiol. 2016;47(1):45-50. doi:10.1007/S10840-016-0136-3/METRICS
9. Nazarian S, Lam K, Darzi A, Ashrafian H. Diagnostic accuracy of smartwatches for the detection of cardiac arrhythmia: Systematic review and meta-analysis. J Med Internet Res. 2021;23(8):e28974. doi:10.2196/28974
10. Ding EY, Marcus GM, McManus DD. Emerging Technologies for Identifying Atrial Fibrillation. Circ Res. 2020;127(1):128-142. doi:10.1161/CIRCRESAHA.119.316342/ASSET/1525E325-B34E-4441-8337-78B65B16FE6A/ASSETS/IMAGES/LARGE/CIRCRESAHA.119.316342.FIG03.JPG
11. Belani S, Wahood W, Hardigan P, Placzek AN, Ely S. Accuracy of Detecting Atrial Fibrillation: A Systematic Review and Meta-Analysis of Wrist-Worn Wearable Technology. Cureus. 2021;13(12). doi:10.7759/CUREUS.20362
12. Hyun S, Lee S, Hong YS, Lim S hyun, Kim DJ. Evaluation of the Diagnostic Performance and Efficacy of Wearable Electrocardiogram Monitoring for Arrhythmia Detection after Cardiac Surgery. J Chest Surg. 2024;57(2):205. doi:10.5090/JCS.23.152
13. Ding EY, CastañedaAvila M, Tran K Van, et al. Usability of a smartwatch for atrial fibrillation detection in older adults after stroke. Cardiovasc Digit Heal J. 2022;3(3):126-135. doi:10.1016/J.CVDHJ.2022.03.003
14. Lang A, Basyal C, Benger M, et al. Process and Systems: Improving stroke pathways using an adhesive ambulatory ECG patch: reducing time for patients to ECGs and subsequent results. Futur Healthc J. 2022;9(1):64-66. doi:10.7861/FHJ.2021-0151
15. Wouters F, Gruwez H, Vranken J, et al. The Potential and Limitations of Mobile Health and Insertable Cardiac Monitors in the Detection of Atrial Fibrillation in Cryptogenic Stroke Patients: Preliminary Results From the REMOTE Trial. Front Cardiovasc Med. 2022;9:848914. doi:10.3389/FCVM.2022.848914/BIBTEX
16. Pagola J, Juega J, Francisco J, et al. Abstract P624: High Detection of Atrial Fibrillation by 90 Days Textil Holter Monitoring in Patients With Cryptogenic Stroke. Stroke. 2021;52(Suppl_1). doi:10.1161/STR.52.SUPPL_1.P624
17. Krathen J, Tan JL, Essilfie G, Ortman M, Andriulli J, Russo A. SHOULD MOBILE TELEMETRY MONITORING OR IMPLANTABLE LOOP RECORDERS BE UTILIZED FOR EARLY DETECTION OF SILENT ATRIAL ARRHYTHMIAS IN PATIENTS WITH CRYPTOGENIC STROKE? J Am Coll Cardiol. 2021;77(18):415. doi:10.1016/S0735-1097(21)01774-5
18. Matsumura ME, Amin H, Khalil Y, Subzposh F, Martin B. UTILITY OF 14 DAY AMBULATORY ECG IN THE DIAGNOSIS OF ATRIAL FIBRILLATION FOLLOWING CRYPTOGENIC STROKE. J Am Coll Cardiol. 2020;75(11):415. doi:10.1016/S0735-1097(20)31042-1
19. Wasserlauf J, You C, Patel R, Valys A, Albert D, Passman R. Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation. Circ Arrhythmia Electrophysiol. 2019;12(6). doi:10.1161/CIRCEP.118.006834/SUPPL_FILE/CIRCAE_CIRCAE-2018-006834_SUPP1.PDF
20. Rajakariar K, Koshy AN, Sajeev JK, Nair S, Roberts L, Teh AW. Accuracy of a smartwatch based single-lead electrocardiogram device in detection of atrial fibrillation. Heart. 2020;106(9):665-670. doi:10.1136/HEARTJNL-2019-316004
21. Dörr M, Nohturfft V, Brasier N, et al. The WATCH AF Trial: SmartWATCHes for Detection of Atrial Fibrillation. JACC Clin Electrophysiol. 2019;5(2):199-208. doi:10.1016/J.JACEP.2018.10.006
22. Ding EY, Han D, Whitcomb C, et al. Accuracy and Usability of a Novel Algorithm for Detection of Irregular Pulse Using a Smartwatch Among Older Adults: Observational Study. JMIR cardio. 2019;3(1):e13850. doi:10.2196/13850
23. Perez M V., Mahaffey KW, Hedlin H, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019;381(20):1909-1917. doi:10.1056/NEJMOA1901183/SUPPL_FILE/NEJMOA1901183_DATA-SHARING.PDF
24. Väliaho ES, Kuoppa P, Lipponen JA, et al. Wrist band photoplethysmography in detection of individual pulses in atrial fibrillation and algorithm-based detection of atrial fibrillation. EP Eur. 2019;21(7):1031-1038. doi:10.1093/EUROPACE/EUZ060
25. Selder JL, Proesmans T, Breukel L, et al. Assessment of a standalone photoplethysmography (PPG) algorithm for detection of atrial fibrillation on wristband-derived data. Comput Methods Programs Biomed. 2020;197:105753. doi:10.1016/J.CMPB.2020.105753
26. Rajakariar K, Koshy A, Sajeev J, Nair S, Roberts L, Teh A. Smartwatch Based Arrhythmia Detection: Accuracy of Clinician Interpretation of Unclassified Tracings. Hear Lung Circ. 2019;28:S228. doi:10.1016/j.hlc.2019.06.221
27. Chen E, Jiang J, Su R, et al. A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation. Hear Rhythm. 2020;17(5):847-853. doi:10.1016/j.hrthm.2020.01.034
28. Hermans ANL, Gawalko M, Dohmen L, et al. Mobile health solutions for atrial fibrillation detection and management: a systematic review. Clin Res Cardiol. 2022;111(5):479-491. doi:10.1007/S00392-021-01941-9/FIGURES/3
29. Gill S, Bunting K V., Sartini C, et al. Smartphone detection of atrial fibrillation using photoplethysmography: a systematic review and meta-analysis. Heart. 2022;108(20):1600-1607. doi:10.1136/HEARTJNL-2021-320417
30. Koh KT, Law WC, Zaw WM, et al. Smartphone electrocardiogram for detecting atrial fibrillation after a cerebral ischaemic event: a multicenter randomized controlled trial. EP Eur. 2021;23(7):1016-1023. doi:10.1093/EUROPACE/EUAB036
Published
Issue
Section
License
Copyright (c) 2024 Galo Fernando Tulcanaza Ochoa, Paulina Elizabeth Cisneros Clavijo, Javier Lizandro Meza Tonato, Paola Gissela Placencia Guartatanga, Mónica Paulina Manzano Vela, Franklin Isaac Nieto Nuñez, Adriana Viviana Viñan Andino, Néstor Raúl Parrales Ponce (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.