Degree of agreement of percentage fat mass in young adults estimated with skinfolds versus bioelectrical impedance

Authors

DOI:

https://doi.org/10.56294/saludcyt2024715

Keywords:

Anthropometry, Body Composition, Electric Impedance, Adipose Tissue

Abstract

Introduction: there are different methods to estimate the percentage of fat mass, among them are anthropometry and bioimpedance. 
Objective: this study seeks to demonstrate the degree of agreement of the percentage of fat mass estimated with bioelectrical impedance versus skin folds in a healthy adult population. 
Methods: agreement study; made up of 44 students from the Adventist University of Chile. The percentage of fat mass obtained by anthropometry was estimated by the Siri formula (density estimated by the Durnin and Womersley equation) based on the bicipital, tricipital, subscapular and suprailiac folds, in triplicate; while for impedancemetry the Seca mBCA 525 equipment was used. The intraclass compensation coefficient (ICC) and Bland-Altman graph were applied, with R-Studio.
Results: 65,91 % had an age between 18-22 years, the 52,27 % were women, 65,91 % with normal nutritional status and with 26,63±10,97 % fat mass. An ICC=0,84 (95 % CI: 0,72-0,91) was found. Women and obese people had the lowest ICCs. The values are within the limits -11,39 - +9,68 of the Bland-Altman graph.
Conclusions: there is an acceptable level of agreement in the percentage of fat mass with the Siri formula versus bioimpedanciometry

References

1. Rodríguez P, Marrodán M, Romero J. Valores de referencia de composición corporal para la población española adulta, obtenidos mediante antropometría, impedancia eléctrica tetrapolar (BIA) e interactancia infrarroja [tesis doctoral]. Madrid: Universidad Complutense de Madrid; 2017. Disponible en: https://eprints.ucm.es/id/eprint/43420/1/T38958.pdf

2. Alomía R, Peña S, Hernández C, Espinoza J. Comparación de los Métodos de Antropometría y Bioimpedancia Eléctrica Mediante la Determinación de la Composición Corporal en Estudiantes Universitarios. MHSalud. 2022;19(2):1–10. doi: https://doi.org/10.15359/mhs.19-2.13.

3. Callejo ML, Marrodán MD. Comparación metodológica del análisis de la composición corporal antropometría, bioimpedancia y excreción de creatinina. Tesis doctoral. Madrid. Universidad Complutense de Madrid. 2015. Disponible en: https://eprints.ucm.es/id/eprint/54172/1/5325629841.pdf

4. Tur J, Bibiloni M. Anthropometry, Body Composition and Resting Energy Expenditure in Human. Nutrients. 2019;11(8):1891. doi: https://doi.org/10.3390/nu11081891.

5. Ripka W, Ulbricht L, Gewehr P. Body composition and prediction equations using skinfold thickness for body fat percentage in Southern Brazilian adolescents. PLoS One. 2017;12(9):e0184854. doi: https://doi.org/10.1371/journal.pone.0184854.

6. Carrion B, Wells A, Mayhew J, Koch A. Concordance Among Bioelectrical Impedance Analysis Measures of Percent Body Fat in Athletic Young Adults. Int J Exerc Sci. 2019;12(4):324-331.

7. Sánchez-Iglesias A, Fernández-Lucas M, Teruel JL. Fundamentos eléctricos de la bioimpedancia. Nefrología. 2012; 32(2):133-5. doi: 10.3265/Nefrologia.pre2012.Jan.11310.

8.Alvero-Cruz J, Correas L, Ronconi M, Fernández R, Porta i Manzañido J. La bioimpedancia eléctrica como método de estimación de la composición corporal, normas prácticas de utilización. Rev Andal Med Deporte. 2011;4(4):167–174.

9. Bosy-Westphal A, Later W, Hitze B, et al. Accuracy of bioelectrical impedance

Consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes Facts. 2008;1(6):319-324.doi: 10.1159/000176061.

10. Cortés-Reyes É, Rubio-Romero JA, Gaitán-Duarte H. Métodos estadísticos de evaluación de la concordancia y la reproducibilidad de pruebas diagnósticas. Rev Colomb Obstet Ginec. 2010;61(3):247–55. doi: https://doi.org/10.18597/rcog.271.

11. Aristizábal J, Restrepo M, Estrada A. Evaluación de la composición corporal de adultos sanos por antropometría e impedancia bioeléctrica. Rev Biomédica. 2007;27(2)216-24.doi: https://doi.org/10.7705/biomedica.v27i2.217.

12. Craig C, Marshall A, Sjöström M, Bauman A, Stand M, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381-1395. doi: 10.1249/01.MSS.0000078924.61453.FB.

13.National Health and Nutrition Examination Survey (NHANES). Anthropometry Procedures Manual. Centro Nacional de Estadísticas de Salud. 2002 [Internet]. Disponible en: de https://www.cdc.gov/nchs/data/nhanes/nhanes_01_02/body_measures_year_3.pdf

14. Pincheiro A, Scarpelli D, Masferrer D. Manual de Evaluación Nutricional: Ecuaciones, fórmulas, parámetros de referencia y criterios para la realización del diagnóstico nutricional en distintas situaciones. Universidad del Desarrollo. 2022; (1):39- 33.

15. Durnin J, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 Years. British Journal of Nutrition. 1974;32(1):77-97. doi: https://doi.org/10.1079/BJN19740060.

16. seca. mBCA 525 [citado el 2 de junio de 2023]. Disponible en: https://www.seca.com/fileadmin/documents/manual/seca_man_525_535_dk.pdf

17 Package “irr” [Internet]. R-project.org. 2022 [citado el 23 de noviembre de 2023]. Disponible en: https://cran.r-project.org/web/packages/irr/irr.pdf

18. Lehnert B. BlandAltmanLeh Intro [Internet]. R-project.org. [citado el 23 de noviembre de 2023]. Disponible en: https://cran.r-project.org/web/packages/BlandAltmanLeh/vignettes/Intro.html

19. The R project for statistical computing [Internet]. R-project.org. [citado el 23 de noviembre de 2023]. Disponible en: https://www.r-project.org/

20. Moreno M, Gómez G, Antoranz G. Medición de la grasa corporal mediante impedancia bioeléctrica, pliegues cutáneos y ecuaciones a partir de medidas antropométricas. análisis comparativos. Rev Esp Salud Pública. 2001; 75(3):221-236.

21. Esquivel MCG, Velasco RVM, Martínez RCE, Barbachano RE, González AG, Castillo RCE. Coeficiente de correlación intraclase vs correlación de Pearson de la glucemia capilar por reflectometría y glucemia plasmática. Med Int Mex. 2006;22(3):165-171.

22. Castillo-Gonzalez W. Charting the Field of Human Factors and Ergonomics: A Bibliometric Exploration. Health Leadership and Quality of Life. 2022;1:6. https://doi.org/10.56294/hl20226.

23. Portao J, Bescós R, Irurtia A, Cacciatori E, Vallejo L. Valoración de la grasa corporal en jóvenes físicamente activos: antropometría y bioimpedancia. Nut Hosp. 2009; 24(5):529-534. doi: https://doi.org/10.3305/nh.2009.24.5.4463.

Downloads

Published

2024-01-11

How to Cite

1.
Manzo-Sepúlveda F, Rodriguez-Sanhueza M, Cares-Muñoz A, López-Espinoza M Ángel. Degree of agreement of percentage fat mass in young adults estimated with skinfolds versus bioelectrical impedance. Salud, Ciencia y Tecnología [Internet]. 2024 Jan. 11 [cited 2024 Sep. 13];4:715. Available from: https://sct.ageditor.ar/index.php/sct/article/view/882