Statistical analysis and decision trees to identify risk factors in the Mexican population due to COVID-19 pandemic

Authors

DOI:

https://doi.org/10.56294/saludcyt2024790

Keywords:

COVID-19 in México, Statistics, Decision Threes, Risk Factors, Vaccination

Abstract

Introduction: the COVID-19 pandemic caused by the new SARS-CoV-2 virus was a big challenge to the world and was responsible for a vast number of deaths in a brief period; one of the countries with the greatest number of deaths was México. For this reason, studying this emergency is crucial.
Objective: study and compare the available statistics for Mexico about the COVID-19 pandemic and build a machine learning model that helps to identify the risk factors of the Mexican population.
Methods: this research is structured into three sections. Firstly, a worldwide and national statistical analysis, then a decision tree-based model, and lastly, research about the results of the vaccination campaign. Different databases were used to fulfill the objectives of each section. 
Results: with international information, the number of cases and deaths were studied for a group of countries; in addition, this study compared daily cases and deceases in México, Colombia, and Spain. The national data was used to obtain different statistics and a decision tree-based model. For the vaccination campaign, various statistics were gathered.
Conclusions: even though international statistics did not help determine if comorbidities had a significant effect on deceases, national statistics indicate that they were a risk factor for passing away due to COVID-19. Similarly, the decision tree model indicated that hospitalization was a common characteristic among deceased people. For the vaccination campaign, the lack of data was a problem in identifying the role this event had in the development of the pandemic; nevertheless, the international surveillance systems received an exceptional number of reports about adverse events; for this reason, each person should decide if they need a vaccine

References

1. Se cumple un año del primer caso confirmado de Covid-19 en el mundo [Internet]. [citado el 8 de noviembre de 2021]. Disponible en: https://www.forbes.com.mx/noticias-se-cumple-un-ano-del-primer-caso-de-coivd-19/

2. Suárez V, Suarez Quezada M, Oros Ruiz S, Ronquillo De Jesús E. Epidemiología de COVID-19 en México: del 27 de febrero al 30 de abril de 2020. Rev Clin Esp [Internet]. 2020;220(8):463-463–71. Disponible en: https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0014256520301442&site=eds-live

3. OMS. Coronavirus [Internet]. [citado el 30 de abril de 2023]. Disponible en: https://www.who.int/es/health-topics/coronavirus#tab=tab_1

4. OMS. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/how-are-vaccines-developed. ¿Cómo se desarrollan las vacunas?

5. Escobar Gutiérrez A. Vacunas, ciencia y salud. México: Secretaría de Salud; 1992. 9–25 p.

6. Dr. Alejandro Díaz Villalobos. Conferencia magistral “Pandemia y vacunas, lecciones aprendidas”, del 28 de febrero de 2023 [Internet]. México: Senado de México; 2023 [citado el 5 de octubre de 2023]. Disponible en: https://www.youtube.com/watch?v=3NZSb02B53I

7. COVID-19 Prevention Network. https://espanol.coronaviruspreventionnetwork.org/rapidez-de-desarrollo-de-vacunas-covid19. 2021. Vacunas contra la COVID-19:¿Cómo las conseguimos tan rápido?

8. OMS. VigiAccess [Internet]. [citado el 14 de febrero de 2023]. Disponible en: https://www.vigiaccess.org/

9. VAERS. VAERS [Internet]. [citado el 14 de febrero de 2023]. Disponible en: https://vaers.hhs.gov/reporteventspan.html

10. EMA. EudraVigilance [Internet]. [citado el 14 de febrero de 2023]. Disponible en: https://www.ema.europa.eu/en/humanregulatory/research-development/pharmacovigilance/eudravigilance

11. INEGI. https://www.inegi.org.mx/contenidos/programas/mortalidad/doc/defunciones_registradas_2020_nota_tecnica.pdf. 2021. ESTADÍSTICA DE DEFUNCIONES REGISTRADAS 2020 (NOTA TÉCNICA).

12. INEGI. inegi.org.mx/contenidos/saladeprensa/boletines/2022/EDR/EDR2021_10.pdf. 2022. ESTADÍSTICAS DE DEFUNCIONES REGISTRADAS 2021.

13. Calendario de vacunación – Vacuna Covid [Internet]. [citado el 8 de noviembre de 2021]. Disponible en: http://vacunacovid.gob.mx/wordpress/calendario-vacunacion/

14. Gobierno de México. Información de la vacuna [Internet]. [citado el 18 de mayo de 2023]. Disponible en: https://vacunacovid.gob.mx/informacion-de-la-vacuna/

15. Mathieu E. RHGO. Our World In Data. 2020 [citado el 28 de noviembre de 2022]. COVID-19 Data. Disponible en: https://github.com/owid/covid-19-data/tree/master/public/data

16. Hasell J, Mathieu E, Beltekian D, Macdonald B, Giattino C, Ortiz-Ospina E, et al. A cross-country database of COVID-19 testing. Sci Data. el 8 de octubre de 2020;7(1).

17. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A global database of COVID-19 vaccinations. Nat Hum Behav. el 10 de mayo de 2021;5(7).

18. Dirección General de Epidemiología del Gobierno de México. Datos Abiertos [Internet]. 2020 [citado el 28 de noviembre de 2022]. Disponible en: https://www.gob.mx/salud/documentos/datos-abiertos-152127

19. Dewan A, Greene RA. CNN en español. 2021 [citado el 30 de agosto de 2023]. Esto es lo que debes saber sobre el riesgo de coágulos de sangre y la vacuna de AstraZeneca contra el covid-19. Disponible en: https://cnnespanol.cnn.com/2021/04/03/esto-es-lo-que-debes-saber-sobre-el-riesgo-de-coagulos-de-sangre-y-la-vacuna-astrazeneca-trax/

20. Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. Circulation. el 10 de agosto de 2021;144(6).

21. Wallace M, Oliver S. COVID-19 mRNA vaccines in adolescents and young adults: Benefit-risk discussion. En CDC; 2021 [citado el 10 de septiembre de 2023]. Disponible en: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/05-COVID-Wallace-508.pdf

22. BBC. BBC. 2021 [citado el 30 de agosto de 2023]. AstraZeneca vaccine: Denmark stops rollout completely. Disponible en: https://www.bbc.com/news/world-europe-56744474

23. Escobar C. Serendipia. 2022 [citado el 30 de agosto de 2023]. ¿Cuál es la vacuna contra COVID-19 más aplicada en México? Disponible en: https://serendipia.digital/covid-19/vacuna-covid-mas-aplicada-en-mexico/#google_vignette

24. Moura EL de, Ferreira JM, Santos ACM dos, Silva DM da, Silva MLF da, Silva GKM de O, et al. Comorbidities increase the risk of severity and mortality in COVID-19 patients: a systematic review and meta-analysis. Research, Society and Development. el 25 de febrero de 2021;10(2).

25. Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, et al. Obesity a risk factor for increased COVID 19 prevalence, severity and lethality (Review). Mol Med Rep. el 5 de mayo de 2020;22(1).

26. Noyola DE, Hermosillo-Arredondo N, Ramírez-Juárez C, Werge-Sánchez A. Association between obesity and diabetes prevalence and COVID-19 mortality in Mexico: an ecological study. The Journal of Infection in Developing Countries. el 31 de octubre de 2021;15(10).

27. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. marzo de 2020;395(10229).

28. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A, et al. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J Clin Endocrinol Metab. el 1 de agosto de 2020;105(8).

29. Cruz-Ramírez N, Hoyos-Rivera G de J, Mestizo-Gutierrez SL, Tapia-McClung H. Data Science: A Useful Tool for Understanding SARS-CoV-2 Information Facts. En: Moving From COVID-19 Mathematical Models to Vaccine Design: Theory, Practice and Experiences. BENTHAM SCIENCE PUBLISHERS; 2022.

30. Cho JY, Kim KH, Lee N, Cho SH, Kim SY, Kim EK, et al. COVID-19 vaccination-related myocarditis: a Korean nationwide study. Eur Heart J. el 25 de junio de 2023;44(24).

31. Faksova K, Walsh D, Jiang Y, Griffin J, Phillips A, Gentile A, et al. COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine. abril de 2024;42(9).

Downloads

Published

2024-01-01

How to Cite

1.
Cervera Arguelles IP, Sánchez Cruz H. Statistical analysis and decision trees to identify risk factors in the Mexican population due to COVID-19 pandemic. Salud, Ciencia y Tecnología [Internet]. 2024 Jan. 1 [cited 2024 Sep. 10];4:790. Available from: https://sct.ageditor.ar/index.php/sct/article/view/842