The effect of composite thickness as thermal insulation roof coating on room temperature reduction
DOI:
https://doi.org/10.56294/saludcyt2022192Keywords:
Natural Stone, Composite, Roof Technology, Temperature Reducer, Roof Coating, GalvanizeAbstract
The increasingly widespread use of galvanized roofs certainly has an effect on the occupants in the room below. Among them is a hot room temperature. For that reason, it is necessary to make new discoveries in the field of composites of natural materials to overcome them because most natural materials, especially natural stone, have low thermal conductivity, which means they can inhibit heat propagation. This study sought to ascertain how much andesite natural stone powder, combined with epoxy, can lower the room temperature when it is layered on a galvanized roof. Different amounts of natural stone powder applied to a galvanized roof results in different thermal conductivities. The temperature readings were taken at a height of 20 cm above the roof, right at the bottom galvanic, as well as the temperature in the room below. Our results showed that adding andesite natural stone powder to the roof was able to lower the room temperature, and the thicker the composite layer in coating the galvanized roof, the lower the room temperature under the roof
References
1. Yang L., Yan H., Lam J.C. Thermal comfort and building energy consumption implications – A review. Applied Energy 2014;115:164-173. doi:10.1016/j.apenergy.2013.10.062
2. Al-Obaidi K.M., Ismail M., Abdul Rahman A.M. Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research 2014;3(3):283-297. doi:10.1016/j.foar.2014.06.002
3. Yuliani,S., Hardiman G., Setyowati E., Setyaningsih W., Winarto Y. Thermal behaviour of concrete and corrugated zinc green roofs on low-rise housing in the humid tropics. Architectural Science Review 2020. doi:10.1080/00038628.2020.1751054
4. Litardo J., Macías J., Hidalgo-León R., Cando M.G., Soriano G. Measuring the Effect of Local Commercial Roofing Samples on the Thermal Behavior of a Social Interest Dwelling Located in Different Climates in Ecuador. Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2019;6:V006T06A047. doi:10.1115/IMECE2019-11472
5. Vengala J., Dharek M.S., Sachin D., Ghanashyam T.B. Thermal analysis of building model with acrylic and aluminium based roof coating materials. Materials Today: Proceedings 2021;47(13):3787-3793. doi:10.1016/j.matpr.2021.03.008
6. Rahmani F., Robinson M.A., Barzegaran M.R. Cool roof coating impact on roof-mounted photovoltaic solar modules at texas green power microgrid. International Journal of Electrical Power & Energy Systems 2021;130:106932. doi:10.1016/j.ijepes.2021.106932
7. Muthukumar K., Sabariraj R.V., Dinesh Kumar S., Sathish T. Investigation of thermal conductivity and thermal resistance analysis on different combination of natural fiber composites of Banana, Pineapple and Jute. Materials Today: Proceedings 2020;21(1):976-980. doi:10.1016/j.matpr.2019.09.140
8. Hu J.J., Huang Y., Zeng X., Li Q., Ren L., Sun R., Xu J.B., Wong C.P. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Composites Science and Technology 2018;160:127-137. doi:10.1016/j.compscitech.2018.01.045
9. Saba N., Jawaid M., Alothman O.Y., Paridah M., Hassan A. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites 2016;35(6):447-470. doi:10.1177/0731684415618459
10. Tufan B., Kun M. Thermal Insulation Performance and Thermal Conductivity Evaluation of Natural Stones by Infrared Thermography. Proceedings of the International Conference on Mining, Material and Metallurgical Engineering 2014;Paper No. 62.
11. Yew MC, Ramli Sulong NH, Chong WT, Poh SC, Ang BC, Tan KH. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction. Energy Conversion and Management. 2013;75:241-248. doi:10.1016/j.enconman.2013.06.024
12. Popov YA, Pribnow FC, Sass JH, Williams CF, Burkhardt H. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics. 1999;28:253-276.
13. Afandi YK, Arief IS, Amiadji. Analisa Laju Korosi pada Pelat Baja Karbon dengan Variasi Ketebalan Coating. 2015;4(1).
14. Tufan B, Kun M. Thermal Insulation Performance and Thermal Conductivity Evaluation of Natural Stones by Infrared Thermography. Proceedings of the International Conference on Mining, Material and Metallurgical Engineering. 2014; Paper No. 62.
15. Yew MC, Ramli Sulong NH, Chong WT, Poh SC, Ang BC, Tan KH. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction. Energy Conversion and Management. 2013;75:241-248. doi:10.1016/j.enconman.2013.06.024
16. Bobde SA, Kshirsagar SD. Improving The Sink Roll Life In Galvalume Using Material AT101 & The variousThermal-Spray Coating on SS3l6L Roll Surface. International Journal of Soft Computing and Engineering. 2013;3(1):282-286.
17. Lopez-Buendia AM. Natural stone reinforcement of discontinuities with resin for industrial processing. Journal Engineering Geology. 2013.
18. Tiskatine R, Oaddi R, El Cadi RA, Bazgaou A, Bouirden L, Aharoune A, Ihlal A. Suitability And Characteristics Of Rocks For Sensible Heat Storage In CSP Plants. Solar Energy Materials And Solar Cells. 2017;169:245-257.
19. Abe H, Abe I, Sato K, Naito M. Dry powder processing of fibrous fumed silica compacts for thermal insulation. J Am Ceram Soc. 2005;88(5):1359-1361.
20. Abe I, Sato K, Abe H, Naito M. Formation of porous fumed silica coating on the surface of glass fibers by a dry mechanical processing technique. Adv Powder Technol. 2008;19(4):311-320.
21. Adamczyk Janusz., Dylewski Robert. The Impact of Thermal Insulation Investments on Sustainability in The Construction Sector. Renewable and Sustainable Energy Review. 2017;80:421- 429, Elsevier.
22. Benane, B. G.P. Baeza, B. Chal, L. Roiban, S. Meille, C. Olagnon, B. Yrieix, G. Foray. Multiscale structure of super insulation nano-fumed silicas studied by SAXS, tomography and porosimetry. Acta Mater. 2019;168:401–410.
23. Charqui, Z. Lahcen El Moutaouakil, Mohammed Boukendil, Rachid Hidki. Numerical study of heat transfer in a tall, partitioned cavity confining two different fluids: Application to the water Trombe wall. International Journal of Thermal Sciences. 2022;171:107266.
24. Culcasi, José Daniel, Elsner, Cecilia Inés, di Sarli, Alejandro Ramón. Effect of Zinc Crystals Size on Galvanized Steel Deformation and Electrochemical Behavior. Materials Research. 2009;12(3):273-279.
25. Du, H. Shijie Wang, Yiqiang Xing, Xiang Li, Mengbo Pan, Wenhao Qi, Chengliang Ma. The dual effect of zirconia fiber on the insulation and mechanical performance of the fumed silica-based thermal insulation material. Ceramics International. 2022;48(5):6657-6662.
26. Feng, J. Y. Yan, D. Chen, W. Ni, J. Yang, S. Ma, W. Mo. Study of thermal stability of fumed silica based thermal insulating composites at high temperatures. Compos. B Eng. 2011;42(7):1821–1825.
27. Feng,J. D. Chen, W. Ni, S. Yang, Z. Hu. Study of IR absorption properties of fumed silica- opacifier composites, J. Non-Cryst. Solids. 2010;356(9–10):480–483.
28. Lei,Y. X. Chen, H. Song, Z. Hu, B. Cao, 2017. Improvement of thermal insulation performance of silica aerogels by Al2O3 powders doping, Ceram. Int. 2017;43(14):10799–10804.
29. Lian, T.W. A. Kondo, T. Kozawa, T. Ohmura, W.-H. Tuan, M. Naito. Effect of fumed silica properties on the thermal insulation performance of fibrous compact. Ceram. Int. 2015;41(8):9966–9971.
30. Liu, J., Moore, J. D., Skokov, K. P., Krautz, M., Löwe, K., Barcza, A., Gutfleisch, O. Exploring La(Fe,Si)13-based magnetic refrigerants towards application. Scripta Materialia. 2012;67(6):584–589. https://doi.org/10.1016/j.scriptamat.2012.05.039.
31. Mishra Subhash, Usmani J A, Varshney Sanjeev. Energy Saving Analysis in Building Walls Through Thermal Insulation System. International Journal of Engineering Research and Applications (IJERA). 2012;2(5):128-135.
32. Moritz, W., Yoshinobu, T., Finger, F., Krause, S., Martin-Fernandez, M., & Schöning, M. J. High resolution LAPS using amorphous silicon as the semiconductor material. Sensors and Actuators B: Chemical. 2004;103(1-2):436–441. http://doi.org/10.1016/j.snb.2004.04.073.
33. Peças, Paulo, Hugo Carvalho, Hafiz Salman, and Marco Leite. Natural Fibre Composites and Their Applications: A Review. Journal of Composites Science. 2018;2(4):66. https://doi.org/10.3390/jcs2040066.
34. Popov, Y.A., Pribnow, F.C., Sass, J.H., Williams, C.F., Burkhardt, H. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics. 1999;28:253-276.
35. Reichenauer, G. U. Heinemann, H.P. Ebert. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity, Colloids Surf. A Physicochem. Eng. Asp. 2007;300(1–2):204–210.
36. R. Tiskatine., R. Oaddi., R. Ait El Cadi., A. Bazgaou. L. Bouirden., A. Aharoune., A. Ihlal. Suitability and Characteristics of Rocks for Sensible Heat Storage in CSP Plants. Solar Energy Materials and Solar Cells. 2017;169:245-257.
37. Shafi,S. J. Tian, R. Navik, Y. Gai, X. Ding, Y. Zhao. Fume silica improves the insulating and mechanical performance of silica aerogel/glass fiber composite. J. Supercrit. Fluids. 2019;148 9–15.
38. Singh, T.N., Sinha, S., Singh, V.K. Prediction of thermal conductivity of rock through physicomechanical properties. Building and Environment. 2007;42:146-155.
39. Wang, H. M. Cao, H.-B. Zhao, J.-X. Liu, C.-Z. Geng, Y.-Z. Wang. Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment, Chem. Eng. J. 2020;399:125698.
40. Yang, W. Yingying Wang, Jiaping Liu. Optimization of the thermal conductivity test for building insulation materials under multifactor impact. Construction and Building Materials. 2022;332(2022):127380.
41. Haiyue Yang, Weixiang Chao, Xin Di, Zhaolin Yang, Tinghan Yang, Qianqian Yu, Feng Liu, Jian Li, Guoliang Li, Chengyu Wang. Multifunctional wood based composite phase change materials for magnetic-thermal and solar-thermal energy conversion and storage. Energy Conversion and Management. 2019;200(2019):112029. https://doi.org/10.1016/j.enconman.2019.112029.
42. Zhang, H. Chenyang Shang, Guihua Tang. Measurement and identification of temperature-dependent thermal conductivity for thermal insulation materials under large temperature difference. International Journal of Thermal Sciences. 2022;171:107261.
43. Zeng, S.Q. A. Hunt, R. Greif. Mean free path and apparent thermal conductivity of a gas in a porous medium. J. Heat Tran. 1995;117(3):758–761.
44. Zhou,T. X. Cheng, Y. Pan, C. Li, L. Gong, H. Zhang. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on coprecursor method by freeze drying. ppl. Surf. Sci. 2018;437:321–328.
45. Zou, W. X. Wang, Y. Wu, L. Zou, G. Zu, D. Chen, J. Shen. Opacifier embedded and fiber reinforced alumina-based aerogel composites for ultra-high temperature thermal insulation. Ceram. Int. 2019;45(1):644–650.
Published
Issue
Section
License
Copyright (c) 2022 Redi Bintarto, Anindhito Purnowidodo, Djarot B. Darmadi, Teguh Dwi Widodo (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.