Machine learning based efficient routing protocol in wireless sensor network

Authors

DOI:

https://doi.org/10.56294/saludcyt2022195

Keywords:

ML-ERP, WSN, CRC, Data Recovery, Machine Learning

Abstract

Data loss and recovery are important factors that directly affect the efficiency of the wireless sensor network (WSN). The wireless channel characteristics have a significant impact on data transmission and reception. On the receiver side, the most difficult tasks are maximizing packet delivery ratio and recovering lost data. In some cases, cyclic redundancy check (CRC) based algorithms can provide better data recovery. The CRC method can be made adaptive by using channel characteristics to correct the error bits. This paper evaluates the performance of the proposed machine learning-based efficient routing protocol (ML-ERP). For data recovery, the CRC with channel impulse response (CIR) prediction based on sensor node location information was used.  The data recovery capability of ML-ERP increased the network efficiency in terms of packet delivery ratio. Also, due to less data loss, the energy efficiency of the network was also improved by almost 6 % over existing protocols

References

1. Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math. 2009;9:717. https://doi.org/10.1007/s10208-009-9045-5

2. Kortas M, Habachi O, Bouallegue A, Meghdadi V, Ezzedine T, Cances J. Energy efficient data gathering schema for wireless sensor network: a matrix completion based approach. In: Proceedings of the International Conference on Software, Telecommunications and Computer Networks. 2019. pp. 1-6. doi: 10.23919/SOFTCOM.2019.8903635.

3. Hung C, Peng W, Lee W. Energy-aware set-covering approaches for approximate data collection in wireless sensor networks. IEEE Trans Knowl Data Eng. 2012 Nov;24(11):1993-2007. doi: 10.1109/TKDE.2011.224.

4. Kortas M, Habachi O, Bouallegue A, Meghdadi V, Ezzedine T, Cances JP. The energy-aware matrix completion-based data gathering scheme for wireless sensor networks. IEEE Access. 2020;8:30772-30788. doi: 10.1109/ACCESS.2020.2972970.

5. Du R, Chen C, Yang B, Lu N, Guan X, Shen X. Effective urban traffic monitoring by vehicular sensor networks. IEEE Trans Veh Technol. 2015 Jan;64(1):273-286. doi: 10.1109/TVT.2014.2321010.

6. Xie K, et al. Recover corrupted data in sensor networks: a matrix completion solution. IEEE Trans Mob Comput. 2017 May 1;16(5):1434-1448. doi: 10.1109/TMC.2016.2595569.

7. Chen Y, Chi Y. Harnessing structures in big data via guaranteed low-rank matrix estimation. arXiv. 2018. https://doi.org/10.48550/arXiv.1802.08397

8. Kumar GE, Baskaran K, Blessing RE, Lydia M. A comprehensive review on the impact of compressed sensing in wireless sensor networks. Int J Smart Sens Intell Syst. 2016. doi: 10.21307/ijssis-2017-897.

9. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006 Apr;52(4):1289-1306. doi: 10.1109/TIT.2006.871582.

10. andes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008 Mar;25(2):21-30. doi: 10.1109/MSP.2007.914731.

11. Eldar YC, Kutyniok G. Compressed Sensing: Theory and Applications. Cambridge University Press; 2012. DOI: 10.1017/CBO9780511794308.

12. Becker S, Bobin J, Candès EJ. NESTA: A fast and accurate first-order method for sparse recovery. SIAM J Imaging Sci. 2011;4:1-39. DOI: 10.1137/090756855.

13. Candes E, Romberg J. l1-magic: Recovery of Sparse Signals via Convex Programming. 2005. Volume 4, p.14. Available from: https://inst.eecs.berkeley.edu/~ee225b/sp08/lectures/CSmeetsML-Lecture1/codes/l1magic/l1magic.pdf

14. Cai TT, Wang L. Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise. IEEE Transactions on Information Theory. 2011;57(7):4680-4688. DOI: 10.1109/TIT.2011.2146090.

15. Zhou H, Zhang D, Xie K. Accurate traffic matrix completion based on multi-Gaussian models. Comput Commun. 2017;102:165-176.

16. Fragkiadakis A, Askoxylakis I, Tragos E. Joint compressed-sensing and matrix-completion for efficient data collection in WSNs. In: Proceedings of the 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD); 2013 Sep 25-27; Berlin, Germany. p. 84-88. DOI: 10.1109/CAMAD.2013.6708094.

17. Wang D, Wan J, Nie Z, Zhang Q, Fei Z. Efficient Data Gathering Methods in Wireless Sensor Networks Using GBTR Matrix Completion. Sensors. 2016;16:1532. DOI: 10.3390/s16091532.

18. He J, Sun G, Li Z, Zhang Y. Compressive data gathering with low-rank constraints for wireless sensor networks. Signal Process. 2017;131:73-76. DOI: 10.1016/j.sigpro.2016.08.002.

19. Xie K, Li X, Wang X, Xie G, Wen J, Zhang D. Active sparse mobile crowd sensing based on matrix completion. In: Proceedings of the 2019 International Conference on Management of Data; 2019 Jun 30-Jul 5; Amsterdam, Netherlands. p. 195-210. DOI: 10.1145/3299869.3319856.

20. Xie K, Wang L, Wang X, Xie G, Wen J. Low Cost and High Accuracy Data Gathering in WSNs with Matrix Completion. IEEE Transactions on Mobile Computing. 2018;17(7):1595-1608. DOI: 10.1109/TMC.2017.2775230.

21. Nath MP, Mohanty SN, Priyadarshini SB. Application of machine learning in wireless sensor network. In: Proceedings of the 8th International Conference on Computing for Sustainable Global Development (INDIACom); 2021. p. 7-12.

22. Cheng H, Shi Y, Wu L, Guo Y, Xiong N. An intelligent scheme for big data recovery in Internet of Things based on Multi-Attribute assistance and Extremely randomized trees. Information Sciences. 2021;557:66-83. doi: 10.1016/j.ins.2020.12.041.

23. Oh BK, Glisic B, Kim Y, Park HS. Convolutional neural network-based data recovery method for structural health monitoring. Structural Health Monitoring. 2020;19(6):1821-1838. doi: 10.1177/1475921719897571.

24. Pellenz ME, Lachowski R, Jamhour E, Brante G, Moritz GL, Souza RD. In-network data aggregation for information-centric WSNs using unsupervised machine learning techniques. In: Proceedings of the IEEE Symposium on Computers and Communications (ISCC); 2021. p. 1-7. doi: 10.1109/ISCC53001.2021.9631416.

25. Kortas M, Habachi O, Bouallegue A, Meghdadi V, Ezzedine T, Cances JP. Robust data recovery in wireless sensor network: a learning-based matrix completion framework. Sensors (Basel). 2021 Feb 2;21(3):1016. doi: 10.3390/s21031016. PMID: 33540836; PMCID: PMC7867355.

26. Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd IEEE International Conference on System Sciences. 2000. p. 1-10.

27. Rajput M, Sharma SK, Khatri P. HM2LP: Hybrid Multilevel Multihop LEACH Protocol for Conserving Energy in Large Area WSN. Int J Intell Eng Syst. 2022;15(2). doi: 10.22266/ijies2022.0430.03.

28. Ennaciri A, Erritali M, Bengourram J. Load balancing protocol (EESAA) to improve quality of service in wireless sensor network. Procedia Computer Science. 2019;151:1140-1145.

29. Elsmany EF, Omar MA, Wan T, Altahir AA. EESRA: Energy efficient scalable routing algorithm for wireless sensor networks. IEEE Access. 2019;7:96974-96983.

30. Sharma R, Vashisht V, Singh U. Fuzzy modeling based energy aware clustering in wireless sensor networks using modified invasive weed optimization. J King Saud Univ Comput Inf Sci. 2019.

Downloads

Published

2022-12-31

How to Cite

1.
Madkar S, Pardeshi S, Kumbhar MS. Machine learning based efficient routing protocol in wireless sensor network. Salud, Ciencia y Tecnología [Internet]. 2022 Dec. 31 [cited 2024 Nov. 21];2:195. Available from: https://sct.ageditor.ar/index.php/sct/article/view/78