Biomonitoring of Benthic Diatoms as Indicators of Water Qual-ity, Assessing the Present and Projecting the Future: A Review

Authors

DOI:

https://doi.org/10.56294/saludcyt20241020

Keywords:

Environmental Biomarkers, Environmental Monitoring, Water Quality, Diatoms, Ecosystems

Abstract

This article delves into using benthic diatoms as bioindicators of water quality, focusing on their ability to detect eutrophication and pollution resulting from industrialization and urbanization. We systematically analyzed 1099 articles from databases such as Web of Science and Scopus using PRISMA methodology, evaluating the efficacy, role, utilities, limitations, and influence of environmental factors of diatoms. The results show variability in water quality monitoring methods, from multivariate analyses to formulas based on species abundance. We highlighted the need for adaptability and validation of specific indices such as IDP and DDI, principally due to limitations in their transregional applicability. In South America, only four countries have developed their methods for assessment using diatoms, while others still rely on international standards. This fact underlines the importance of implementing effective local policies to manage water resources. Finally, we concluded that diatoms are crucial biological indicators for monitoring aquatic ecosystems, although challenges such as complexity in taxonomic identification and lack of standardization condition their effectiveness. In addition, biogeographical and environmental factors play an essential role in the diversity of these species, being necessary for understanding and anticipating changes in aquatic environments

References

1. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, et al. Global threats to human water security and river biodiversity. Nature. 2010;467(7315):555–61.

2. Luo Z, Zuo Q, Shao Q. A new framework for assessing river ecosystem health with consideration of human service demand. Sci Total Environ. 2018;640–641(March 2021):442–53.

3. Zhao YW, Zhou LQ, Dong BQ, Dai C. Health assessment for urban rivers based on the pressure, state and response framework—A case study of the Shiwuli River. Ecol Indic. 2019;99(April 2018):324–31.

4. Tan X, Ma P, Bunn SE, Zhang Q. Development of a benthic diatom index of biotic integrity (BD-IBI) for ecosystem health assessment of human dominant subtropical rivers, China. J Environ Manage [Internet]. 2015;151:286–94. Available from: http://dx.doi.org/10.1016/j.jenvman.2014.12.048

5. Xue H, Zheng B, Meng F, Wang Y, Zhang L, Cheng P. Assessment of aquatic ecosystem health of the wutong river based on benthic diatoms. Water (Switzerland). 2019;11(4).

6. Yu P, You Q, Pang W, Cao Y, Bi Y, Wang Q. Development of a periphytic diatom-based comprehensive diatom index for assessing the trophic status of lakes in the lower reaches of the yangtze river, China. Water (Switzerland). 2021;13(24).

7. Bassi MA, Lopez MA, Confalone L, Gaudio RM, Lombardo L, Lauritano D. Enhanced Reader.pdf. Vol. 388, Nature. 2020. p. 539–47.

8. Kalyoncu H, Şerbetci B. Applicability of Diatom-Based Water Quality Assessment Indices in Dari Stream , Isparta-. Int J Environ Earth Sci Eng. 2013;7(6):188–96.

9. Resende P, Azeiteiro U, Pereira MJ. Diatom ecological preferences in a shallow temperate estuary (Ria de Aveiro, Western Portugal). Hydrobiologia. 2005;544(1):77–88.

10. Flower RJ, Williams DM. Diatomites: Their formation, distribution and uses. Ref Modul Earth Syst Environ Sci. 2023;

11. Hubas C, Monti D, Mortillaro JM, Augagneur S, Carbon A, Duran R, et al. Chlordecone-contaminated epilithic biofilms show increased adsorption capacities. Sci Total Environ. 2022;825:153942.

12. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys Ther. 2009;89(9):873–80.

13. Gerhardt A. Biomonitoring of polluted water : reviews on actual topics. Gerhardt A, editor. Uetikon, Zurich: Trans Tech; 2000. (Environmental research forum, v. 9).

14. Niemi GJ, McDonald ME. Application of ecological indicators. Annu Rev Ecol Evol Syst. 2004;35(Rapport 1992):89–111.

15. Passy SI, Bode RW. Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia. 2004;524(1):241–52.

16. Vilmi A, Karjalainen SM, Hellsten S, Heino J. Bioassessment in a metacommunity context: Are diatom communities structured solely by species sorting? Ecol Indic [Internet]. 2016;62:86–94. Available from: http://dx.doi.org/10.1016/j.ecolind.2015.11.043

17. Hilty J, Merenlender A. Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv. 2000;92(2):185–97.

18. Trach Y, Chernyshev D, Biedunkova O, Moshynskyi V, Trach R, Statnyk I. Modeling of Water Quality in West Ukrainian Rivers Based on Fluctuating Asymmetry of the Fish Population. Water. 2022;1–20.

19. Stevenson J. Ecological assessments with algae: a review and synthesis. J Phycol. 2014;50(3):437–61.

20. Bere T. Challenges of diatom-based biological monitoring and assessment of streams in developing countries. Environ Sci Pollut Res. 2015;23(6):5477–86.

21. Charles DF, Kelly MG, Stevenson RJ, Poikane S, Theroux S, Zgrundo A, et al. Benthic algae assessments in the EU and the US: Striving for consistency in the face of great ecological diversity. Ecol Indic [Internet]. 2021;121(October 2020):107082. Available from: https://doi.org/10.1016/j.ecolind.2020.107082

22. Costa APT, Schneck F. Diatoms as indicators in running waters: trends of studies on biological assessment and monitoring. Environ Monit Assess [Internet]. 2022;194(10):695. Available from: https://pubmed.ncbi.nlm.nih.gov/35986195/

23. Maitland VC, Robinson CV, Porter TM, Hajibabaei M. Freshwater diatom biomonitoring through benthic kick-net metabarcoding. PLoS One. 2020;15(11 November):1–18.

24. Kahlert M, Ács É, Almeida SFP, Blanco S, Dreßler M, Ector L, et al. Quality assurance of diatom counts in Europe: towards harmonized datasets. Hydrobiologia. 2016;772(1):1–14.

25. Sládeček V. Diatoms as Indicators of Organic Pollution. Acta Hydrochim Hydrobiol. 1986;14(5):555–66.

26. Vanlandingham S. Evaluación comparativa de la calidad del agua en el río St. Joseph (Michigan e Indiana, EE. UU.) mediante tres métodos de análisis de algas. Hidrobiología. 1976;

27. Álvarez-Blanco I, Blanco S, Cejudo-Figueiras C, Bécares E. The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: Design and validation. Environ Monit Assess. 2013;185(1):969–81.

28. Vam Dam H. On the use of measures of structure and diversity in applied diatom ecology. Hydrobiol Bull [Internet]. 1982;16(2):288. Available from: http://eprints.uanl.mx/5481/1/1020149995.PDF

29. Chessman BC, Townsend SA. Differing effects of catchment land use on water chemistry explain contrasting behaviour of a diatom index in tropical northern and temperate southern Australia. Ecol Indic. 2010;10(3):620–6.

30. Ab N. Débits minima, Débit biologiques, Débits objectifs d’étiage, Synthèse méthodologique et proposition d’harmonisation pour les cours d’eau de tête de bassin. L’eau en Mont Fiche action. 2010;1–61.

31. Stevenson RJ, Pan Y, Manoylov KM, Parker CA, Larsen DP, Herlihy AT. Development of diatom indicators of ecological conditions for streams of the western US. J North Am Benthol Soc. 2008;27(4):1000–16.

32. Ponader KC, Charles DF, Belton TJ. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecol Indic. 2007;7(1):79–93.

33. Dell’uomo A, Torrisi M. The Eutrophication/Pollution Index-Diatom based (EPI-D) and three new related indices for monitoring rivers: The case study of the river Potenza (the Marches, Italy). Plant Biosyst - An Int J Deal with all Asp Plant Biol [Internet]. 2011 Jun [cited 2023 Sep 29];145(2):331–41. Available from: https://www.tandfonline.com/doi/abs/10.1080/11263504.2011.569347

34. Kelly MG, Whitton BA. The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. J Appl Phycol [Internet]. 1995;7(4):433–44. Available from: https://link.springer.com/article/10.1007/BF00003802

35. Lobo EA, Schuch M, Heinrich CG, da Costa A Ben, Düpont A, Wetzel CE, et al. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess [Internet]. 2015;187(6):1–13. Available from: https://link.springer.com/article/10.1007/s10661-015-4586-3

36. Gómez N, Licursi M. The Pampean Diatom Index ( IDP ) for assessment of rivers and streams in The Pampean Diatom Index ( IDP ) for assessment of rivers and streams in Argentina. 2001;(June).

37. Wu JT. A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia [Internet]. 1999;397(0):79–87. Available from: https://link.springer.com/article/10.1023/A:1003694414751

38. Watanabe T, Asai K, Houki A. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage ----- diatom assemblage index ( DAIpo ) ----. Sci Total Environ. 1986 Nov 1;55(C):209–18.

39. Zelinka M, Marvan P. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobiologie; 1961.

40. Prygiel J, Leveque L, Iserentant R. Un nouvel Indice Diatomique Pratique pour l’évaluation de la qualité des eaux en réseau de surveillance. Rev des Sci l’eau / J Water Sci [Internet]. 1996 [cited 2023 Oct 6];9(1):97–113. Available from: https://id.erudit.org/iderudit/705244ar

41. Marchetto A, Sforzi T. Using benthic diatoms for estimating lake ecological quality: Comparing different taxonomic resolution. Adv Oceanogr Limnol [Internet]. 2018 Jul 10 [cited 2023 Oct 9];9(1):1–9. Available from: https://www.pagepressjournals.org/index.php/aiol/article/view/7389

42. Dell’uomo A, Torrisi M. The Eutrophication/Pollution Index-Diatom based (EPI-D) and three new related indices for monitoring rivers: The case study of the river Potenza (the Marches, Italy). Plant Biosyst - An Int J Deal with all Asp Plant Biol [Internet]. 2011;145(2):331–41. Available from: https://www.tandfonline.com/doi/abs/10.1080/11263504.2011.569347

43. Lobo EA, Schuch M, Heinrich CG, da Costa A Ben, Düpont A, Wetzel CE, et al. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess. 2015;187(6).

44. Stenger-Kovács C, Buczkó K, Hajnal É, Padisák J. Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary. Hydrobiologia. 2007;589(1):141–54.

45. Nascimento J, Sousa C, Morales MJ, Arminini A, Arroyo-Pérez, Yohana W, et al. Tropical and Subtropical South America: A Study of Community Turnover Across Environmental Gradients. Rull V, Carnaval A, editors. Barcelona: Springer Nature Switzerland AG.; 2020. 71–83 p.

46. Antonelli A, Nylander JAA, Persson C, Sanmartín I. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A. 2009;106(24):9749–54.

47. Luebert F, Weigend M. Phylogenetic insights into Andean plant diversification. Front Ecol Evol. 2014;2(JUN).

48. Heino J, Soininen J, Alahuhta J, Lappalainen J, Virtanen R. Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia. 2017;183(1):121–37.

49. Pajunen V, Luoto M, Soininen J. Climate is an important driver for stream diatom distributions. Glob Ecol Biogeogr. 2016;25(2):198–206.

50. Jocque M, Field R, Brendonck L, De Meester L. Climatic control of dispersal-ecological specialization trade-offs: A metacommunity process at the heart of the latitudinal diversity gradient? Glob Ecol Biogeogr. 2010;19(2):244–52.

51. Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr. 2010;19(1):134–43.

52. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol Lett. 2004;7(7):601–13.

53. Viana DS, Figuerola J, Schwenk K, Manca M, Hobæk A, Mjelde M, et al. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography (Cop). 2016;39(3):281–8.

54. Baker PA, Fritz SC. Nature and causes of Quaternary climate variation of tropical South America. Quat Sci Rev. 2015;124:31–47.

55. Särkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE. Evolutionary islands in the Andes: Persistence and isolation explain high endemism in Andean dry tropical forests. J Biogeogr. 2012;39(5):884–900.

56. Benito X, Fritz SC, Steinitz-Kannan M, Tapia PM, Kelly MA, Lowell T V. Geo-climatic factors drive diatom community distribution in tropical South American freshwaters. J Ecol. 2018;106(4):1660–72.

57. Hawkins B. Ecology ’s oldest pattern ? Trends Ecol Evol. 2001;16(8):5347.

58. Taxböck L, Karger DN, Kessler M, Spitale D, Cantonati M. Diatom species richness in Swiss springs increases with habitat complexity and elevation. Water (Switzerland). 2020;12(2):1–15.

59. Raja NB, Kiessling W. Out of the extratropics: The evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc R Soc B Biol Sci. 2021;288(1950).

60. Wang J, Meier S, Soininen J, Casamayor EO, Pan F, Tang X, et al. Regional and global elevational patterns of microbial species richness and evenness. Ecography (Cop). 2017;40(3):393–402.

61. Cavicchioli R, Bakken L, Baylis M, Foreman C, Karl D, Koskella B, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

62. Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, Hodgson DA, et al. Historical processes constrain patterns in global diatom diversity. Ecology. 2007;88(8):1924–31.

63. Olguín HF, Alder VA, Puig A, Boltovskoy D. Latitudinal diversity patterns of diatoms in the Southwestern Atlantic and Antarctic waters. J Plankton Res. 2015;37(4):659–65.

64. Passy SI. A distinct latitudinal gradient of diatom diversity is linked to resource supply. Ecology. 2010;91(1):36–41.

65. Soininen J, Teittinen A. Fifteen important questions in the spatial ecology of diatoms. Freshw Biol. 2019;64(11):2071–83.

66. Gremmen NJM, Van De Vijver B, Frenot Y, Lebouvier M. Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarct Sci. 2007;19(1):17–24.

67. Kluge J, Kessler M, Dunn RR. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr. 2006;15(4):358–71.

68. Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: A comparative metric-based analysis of organism response to stress. Freshw Biol. 2006;51(9):1757–85.

69. Liu Y, Fu J, Cheng D, Lin Q, Su P, Wang X, et al. The spatial pattern of periphytic algae communities and its corresponding mechanism to environmental variables in the Weihe River Basin, China. Hydrol Res. 2020;51(5):1036–47.

70. Díaz C, Rivera C. Diatomeas De Pequeños Ríos Andinos Y Su Utilización Como Indicadoras De Condiciones Ambientales. Caldasia. 2004;26(2).

71. Zhang J, Guo L, Huang T, Zhang D, Deng Z, Liu L, et al. Hydro-environmental response to the inter-basin water resource development in the middle and lower Han River, China. Hydrol Res. 2021;00(0):1–14.

72. Soininen J. Environmental and spatial control of freshwater diatoms—a review. Diatom Res. 2007;22(2):473–90.

73. Vélez-Agudelo C, Espinosa M, Fayó R, Isla F. Modern diatoms from a temperate river in South America: the Colorado River (North Patagonia, Argentina). Diatom Res. 2017;32(2):133–52.

74. Liu C, Liu L, Shen H. Seasonal variations of phytoplankton community structure in relation to physico-chemical factors in Lake Baiyangdian, China. Procedia Environ Sci. 2010;2:1622–31.

75. Abdelmongy A, El-Moselhy K. Seasonal Variations of the Physical and Chemical Properties of Seawater at the Northern Red Sea, Egypt. Open J Ocean Coast Sci. 2015;2(1):1–17.

76. Sabater-Liesa L, Ginebreda A, Barceló D. Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis. Sci Total Environ. 2018;642:968–78.

77. Yang M, Xia J, Cai W, Zhou Z, Yang L, Zhu X, et al. Seasonal and spatial distributions of morpho-functional phytoplankton groups and the role of environmental factors in a subtropical river-type reservoir. Water Sci Technol. 2020;82(11):2316–30.

78. Rivera J, Pinilla G, Rangel O. Assemblage of aquatic macroinvertebrates and its relationship whit physical and chemical variables in the wetland Jaboque-Colombia. Caldasia. 2013;35(2):389–408.

79. Deyab M, El-Adl M, Ward F, Omar E. Trophic status, phytoplankton diversity, and water quality at Kafr El-Shinawy drinking-water treatment plant, Damietta. Aqua Water Infrastructure, Ecosyst Soc. 2021;70(3):342–60.

80. Deyab M, Ahmed SA, Ward F. Seasonal patterns in phytoplankton growth, composition, and predominance in relation to water quality at Northwest El-Manzala Lake, Egypt. Water Sci Technol Water Supply. 2020;20(8):3341–57.

81. Cantonati M, Gerecke R, Bertuzzi E. Springs of the Alps - Sensitive ecosystems to environmental change: From biodiversity assessments to long-term studies. Vol. 562, Hydrobiologia. 2006. 59–96 p.

82. Salcedo M, Catañeda M, Langos F, Sosa C, Landeros C, Itzel G. Influence of physicochemical parameters on phytoplankton distribution in the lagoon system of Mandinga, Mexico. Rev bio ciencias. 2019;6:1–25.

83. Cantonati M, Spitale D. The role of environmental variables in structuring epiphytic and epilithic diatom assemblages in springs and streams of the Dolomiti Bellunesi National Park (south-eastern Alps). Fundam Appl Limnol. 2009;174(2):117–33.

84. Bellinger B, Sigee D. Freshwater Algae: Identification and Use As Bioindicators. J Phycol. 2010;47(2):436–8.

Downloads

Published

2024-04-01

How to Cite

1.
Méndez-Zambrano P, Ureta Valdez R, Tierra Pérez L, Flores Orozco Ángel. Biomonitoring of Benthic Diatoms as Indicators of Water Qual-ity, Assessing the Present and Projecting the Future: A Review. Salud, Ciencia y Tecnología [Internet]. 2024 Apr. 1 [cited 2024 Sep. 8];4:1020. Available from: https://sct.ageditor.ar/index.php/sct/article/view/738