Enhancing Image Clarity: Feature Selection with Trickster Coyote Optimization in Noisy/Blurry Images
DOI:
https://doi.org/10.56294/saludcyt20241114Keywords:
Emotion Recognition, Giat, Feature Selection, Optimization, Trickster CoyoteAbstract
This paper presents a novel method for recognizing human emotions from gait data collected in an unconstrained environment. The method uses a bi-directional long short-term memory (FL-BiLSTM) network that is optimized by an augmented trickster coyote algorithm for feature selection and classification. The study focuses on overcoming the limitations of existing gait recognition systems that struggle with changes in walking direction. The paper evaluates the performance of the proposed FL-BiLSTM classifier method on a dataset of gait sequences with different emotions and compares it with existing methods. The results show that the proposed method achieves high accuracy, sensitivity, and specificity in emotion recognition from gait
References
1. Bhatia, Y., Bari, A.H., Hsu, G.S.J. and Gavrilova, M., “Motion capture sensor-based emotion recognition using a bi-modular sequential neural network,” Sensors, vol. 22, no. (1), pp.403, 2022. https://doi.org/10.3390/s22010403
2. Le, D.S., Phan, H.H., Hung, H.H., Tran, V.A., Nguyen, T.H. and Nguyen, D.Q., “KFSENet: A Key Frame-Based Skeleton Feature Estimation and Action Recognition Network for Improved Robot Vision with Face and Emotion Recognition,” Applied Sciences, vol. 12, no. 11, pp. 5455, 2022. https://doi.org/10.3390/app12115455
3. Shopon, M., Hsu, G.S.J. and Gavrilova, M.L., “Multi-view Gait Recognition on Unconstrained Path Using Graph Convolutional Neural Network,” IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3176873
4. Sheng, W. and Li, X., “Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network,” Pattern Recognition, vol.114, pp.107868, 2021. https://doi.org/10.1016/j.patcog.2021.107868
5. Wang, S., Li, J., Cao, T., Wang, H., Tu, P., and Li, Y., “Dance emotion recognition based on laban motion analysis using convolutional neural network and long short-term memory,” IEEE Access, vol.8, pp.124928-124938, 2020. https://doi.org/10.1109/ACCESS.2020.3007956
6. Luo, Y., Ye, J., Adams, R.B., Li, J., Newman, M.G., and Wang, J.Z., “ARBEE: Towards automated recognition of bodily expression of emotion in the wild,” International journal of computer vision, vol.128, no.1, pp.1-25, 2020. https://doi.org/10.1007/s11263-019-01215-y
7. Bhattacharya, U., Roncal, C., Mittal, T., Chandra, R., Kapsaskis, K., Gray, K., Bera, A. andManocha, D., 2020, August. Take an emotion walk: Perceiving emotions from gaits using hierarchical attention pooling and affective mapping. In European Conference on Computer Vision (pp. 145-163). Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_9
8. Sepas-Moghaddam, A. and Etemad, A., “View-invariant gait recognition with attentive recurrent learning of partial representations,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol.3, no.1, pp.124-137, 2020. https://doi.org/10.1109/TBIOM.2020.3031470
9. Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, ‘‘A survey of affect recognition methods: Audio, visual, and spontaneous expressions,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 39–58, Jan. 2009. https://doi.org/10.1109/TPAMI.2008.52
10. F. Deligianni, Y. Guo, and G. Yang, “From emotions to mood disorders: A survey on gait analysis methodology,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 6, pp. 2302–2316, November 2019. https://doi.org/10.1109/JBHI.2019.2938111
11. Gavrilova, M.L.; Ahmed, F.; Bari, A.H.; Liu, R.; Liu, T.; Maret, Y.; Sieu, B.K.; Sudhakar, T. Multi-modal motion-capture-based biometric systems for emergency response and patient rehabilitation. In Research Anthology on Rehabilitation Practices and Therapy; IGI Global: Hershey, PA, USA, 2021; pp. 653–678. https://doi.org/10.4018/978-1-7998-3432-8.ch032
12. Gong, D.; Medioni, G.; Zhao, X. Structured time series analysis for human action segmentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 1414–1427. https://doi.org/10.1109/TPAMI.2013.244
13. M. Liu, H. Liu, C. Chen, Enhanced skeleton visualization for view invariant human action recognition, Pattern Recognit 68 (2017) 346–362, doi: 10.1016/ j.patcog.2017.02.030. https://doi.org/10.1016/j.patcog.2017.02.030
14. A. Sepas-Moghaddam and A. Etemad, ‘‘Deep gait recognition: A survey,’’ 2021, arXiv: 2102.09546. https://doi.org/10.48550/arXiv.2102.09546
15. K. R. Shetty, V. S. Soorinje, and P. Dsouza, ‘‘Deep learning for computer vision: A brief review,’’ Int. J. Adv. Res. Sci., Commun. Technol., vol. 2018, pp. 450–463, Mar. 2022. https://doi.org/10.48175/IJARSCT-2898
16. Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A. and Manocha, D., 2019. Identifying emotions from walking using affective and deep features. arXiv preprint arXiv:1906.11884. https://doi.org/10.48550/arXiv.1906.11884
17. Pierezan, J. and Coelho, L.D.S., 2018, July. Coyote optimization algorithm: a new metaheuristic for global optimization problems. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE. https://doi.org/10.1109/CEC.2018.8477769
18. Chu, S.C., Tsai, P.W. and Pan, J.S., 2006, August. Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg. https://doi.org/10.1007/11801603_94
19. EWalkdataset,“http://gamma.cs.unc.edu/GAIT/”.
20. Zhicheng Zhang & Jianqin Yin.2021.A Feature Selection Approach Based on Improved Binary Coyote Optimization Algorithm.Proceedings of 2021 Chinese Intelligent Automation Conference, pp 683–691, volume 801. https://doi.org/10.1007/978-981-16-6372-7_73
21. Rodrigo Clemente, Thom de Souza, Camila Andrade de Macedo, Leandro dos Santos Coelho, Juliano Pierezan , Viviana Cocco Mariani.2020.Binary coyote optimization algorithm for feature selection.Pattern Recognition,Volume 107, 107470 https://doi.org/10.1016/j.patcog.2020.107470
22. Qingke Zhang , Xianglong Bu , Zhi-Hui Zhan ,Junqing Li , Huaxiang Zhang .2023.An efficient Optimization State-based Coyote Optimization Algorithm and its applications.Applied Soft Computing, Volume 147, 110827 https://doi.org/10.1016/j.asoc.2023.110827
23. Mahendra Bhatu Gawali & Swapnali Sunil Gawali. 2022.Development of improved coyote optimization with deep neural network for intelligent skill knowledge transfer for human to robot interaction.Volume 6, pages 288–305, International Journal of Intelligent Robotics and Applications https://doi.org/10.1007/s41315-022-00236-0
24. Bei Pan, Kaoru Hirota, Zhiyang Jia, Linhui Zhao, Xiaoming Jin & Yaping Dai.2023.Multimodal emotion recognition based on feature selection and extreme learning machine in video clips.Journal of Ambient Intelligence and Humanized Computing Volume 14, pages 1903–1917. https://doi.org/10.1007/s12652-021-03407-2
25. Thampi, S. M., Piramuthu, S., Li, K.-C., Berretti, S., Wozniak, M., & Singh, D. 2021. Machine Learning and Metaheuristics Algorithms, and Applications. Communications in Computer and Information Science. https://doi.org/10.1007/978-981-16-0419-5
26. Soh, Ping Jack, Woo, Wai Lok, Sulaiman, Hamzah Asyrani, Othman, Mohd Azlishah, Saat, Mohd Shakir 2016. Improved Speech Emotion Classification from Spectral Coefficient Optimization. Advances in Machine Learning and Signal Processing Volume 387.10.1007/978-3-319-32213,pp.247–257. https://doi.org/10.1007/978-3-319-32213-1_22
Published
Issue
Section
License
Copyright (c) 2024 Prachi Jain, Vinod Maan (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.