New Pharmacological Strategies and Their Mechanism of Action in the Treatment of Pulmonary Tuberculosis

Authors

DOI:

https://doi.org/10.56294/saludcyt20241191

Keywords:

Tuberculosis, Granulomas, Treatment, Resistance

Abstract

Pulmonary TB (TBP), caused by the bacillus Mycobacterium Tuberculosis (Mtb), is one of the most prevalent and deadly infectious diseases worldwide. With approximately a quarter of the global population affected, TB is one of the main causes of mortality within the spectrum of infectious diseases. Given this reality, there is an urgent need to explore and analyze new strategies that offer hope in the fight against this disease. The present article aims to offer an analytical review of emerging strategies in the treatment of TB. To achieve this objective, a comprehensive review methodology has been adopted, covering a wide range of recent bibliographic sources, including academic research and specialized literature. The purpose is to compile and synthesize the most significant and up-to-date contributions in the field, thus providing a clear and current overview of advances in the fight against TB.
The article is structured in key sections covering the introduction to the basic concepts of TBS, the epidemiology and the interaction between Mtb and the host immune response, focusing on granuloma formation. In addition, pharmacodynamics and conventional treatments are discussed, along with a critical review on drug resistance. It concludes by highlighting the need for innovation and personalization in treatments to address drug resistance, offering a comprehensive view of the current challenges and solutions in TB management

References

1. Neri-vela R. La tuberculosis pulmonar. Aspectos históricos Lung tuberculosis . Historical aspects . Med Interna México [Internet]. 2023;39(1):114–26. Available from: https://d1wqtxts1xzle7.cloudfront.net/99056037/medintENE_FEB2023opinion1_La_tuberculosis_pulmonar._Aspectos_historicos-libre.pdf?1677211902=&response-content-disposition=inline%3B+filename%3DLa_tuberculosis_pulmonar_Aspectos_histor.pdf&Expires=1680912576&

2. Sossen B, Richards AS, Heinsohn T, Frascella B, Balzarini F, Oradini-Alacreu A, et al. The natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysis. Lancet Respir Med [Internet]. 2023;11(4):367–79. Available from: https://journals.lww.com/ijebh/abstract/2014/03000/strategies_to_promote_adherence_to_treatment_by.2.aspx

3. Akinnuwesi A, Egieyeh S, Cloete R. State-of-the-art strategies to prioritize Mycobacterium tuberculosis drug targets for drug discovery using a subtractive genomics approach. Front Drug Discov. 2023;3(September):1–8.

4. Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg [Internet]. 2017;58(1):E9–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432783/pdf/2421-4248-58-E9.pdf

5. Organización Mundial de la Salud. Tuberculosis [Internet]. Organización Mundial de la Salud. 2023. p. 1. Available from: https://www.who.int/es/news-room/fact-sheets/detail/tuberculosis

6. Suwankeeree W, Picheansathian W. Strategies to promote adherence to treatment by pulmonary tuberculosis patients: A systematic review. Int J Evid Based Healthc. 2014;12(1):3–16.

7. Lee JY, Kwon N, Goo G yeon, Cho S il. Inadequate housing and pulmonary tuberculosis: a systematic review. BMC Public Health [Internet]. 2022;22(1):1–12. Available from: https://doi.org/10.1186/s12889-022-12879-6

8. Pagán AJ, Ramakrishnan L. The Formation and Function of Granulomas. Annu Rev Immunol [Internet]. 2018;36:639–65. Available from: https://www.annualreviews.org/doi/10.1146/annurev-immunol-032712-100022#:~:text=Granulomas are organized aggregates of,that individual macrophages cannot eradicate.

9. Natarajan A, Beena PM, Devnikar A V., Mali S. A systemic review on tuberculosis. Indian J Tuberc [Internet]. 2020;67(3):295–311. Available from: https://doi.org/10.1016/j.ijtb.2020.02.005

10. Pezzella AT. History of Pulmonary Tuberculosis. Thorac Surg Clin [Internet]. 2019;29(1):1–17. Available from: https://doi.org/10.1016/j.thorsurg.2018.09.002

11. Murray JF, Schraufnagel DE, Hopewell PC. Treatment of tuberculosis: A historical perspective. Ann Am Thorac Soc. 2015;12(12):1749–59.

12. Migliori GB, Caminero Luna J, Kurhasani X, van den Boom M, Visca D, D’Ambrosio L, et al. History of prevention, diagnosis, treatment and rehabilitation of pulmonary sequelae of tuberculosis. Press Medicale [Internet]. 2022;51(3):104112. Available from: https://doi.org/10.1016/j.lpm.2022.104112

13. Helwig NE, Hong S, Hsiao-wecksler ET. GLOBAL TUBERCULOSIS REPORT [Internet]. World Health Organization; Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022

14. Global Tuberculosis Programme, Headquarters W. Programmatic innovations to address challenges in tuberculosis prevention and care during the COVID-19 pandemic. Who. 2021. 38 p.

15. World Health Organization. Consolidated report of country success stories in mitigating the impact of the COVID-19 pandemic on TB services. 2022; Available from: https://apps.who.int/iris/rest/bitstreams/1418690/retrieve

16. Hortle E, Oehlers SH. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathog Dis [Internet]. 2020;78(2):1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/32149337/#:~:text=%23 【1†Host,to create a permissive niche

17. Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol [Internet]. 2016;38(2):167–83. Available from: https://link.springer.com/article/10.1007/s00281-015-0537-x

18. Cohen SB, Gern BH, Urdahl KB. The Tuberculous Granuloma and Preexisting Immunity. Annu Rev Immunol [Internet]. 2022;40:589–614. Available from: https://pubmed.ncbi.nlm.nih.gov/35130029/#:~:text=,These models%2C however%2C typ …

19. Silva Miranda M, Breiman A, Allain S, Deknuydt F, Altare F. The tuberculous granuloma: An unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol. 2012;2012.

20. Guler R, Ozturk M, Sabeel S, Motaung B, Parihar SP, Thienemann F, et al. Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Front Immunol [Internet]. 2021;12(October):1–16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563828/

21. Ministerio de Salud Pública. Prevención, diagnóstico, tratamiento y control de la tuberculosis. Guía de Práctica Clínica. [Internet]. Msp. 2018. 37 p. Available from: https://www.salud.gob.ec/wp-content/uploads/2018/03/GP_Tuberculosis-1.pdf

22. Chung SJ, Byeon SJ, Choi JH. Analysis of Adverse Drug Reactions to First-Line Anti-Tuberculosis Drugs Using the Korea Adverse Event Reporting System. J Korean Med Sci [Internet]. 2022;37(16):1–11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039191/

23. Baquero-Artigao F, del Rosal T, Falcón-Neyra L, Ferreras-Antolín L, Gómez-Pastrana D, Hernanz-Lobo A, et al. Update on the diagnosis and treatment of tuberculosis. An Pediatr. 2023;98(6):460–9.

24. Badawy E, Abouelsaoud K, Kabbash A, Ragab A. Isoniazid, Mechanism of action, Biological Activity, Resistance and Biotransformation. J Adv Med Pharm Res [Internet]. 2023;0(0):0–0. Available from: https://jampr.journals.ekb.eg/article_298591.html

25. Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of Pyrazinamide Action and Resistance The History: The Unusual Discovery and the Roller Coaster of PZA. Microbiol Spectr [Internet]. 2014;2(4):1–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268777/pdf/nihms594851.pdf

26. Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR, et al. Ethambutol resistance in Mycobacterium tuberculosis: Critical role of embB mutations. Antimicrob Agents Chemother. 1997;41(8):1677–81.

27. Gómez-Tangarife VJ, Gómez-Restrepo AJ, Robledo-Restrepo J, Hernández-Sarmiento JM. Drug resistance in mycobacterium tuberculosis: Contribution of constituent and acquired mechanisms. Rev Salud Publica. 2018;20(4):491–7.

28. Dean AS, Tosas Auguet O, Glaziou P, Zignol M, Ismail N, Kasaeva T, et al. 25 years of surveillance of drug-resistant tuberculosis: achievements, challenges, and way forward. Lancet Infect Dis [Internet]. 2022;22(7):e191–6. Available from: http://dx.doi.org/10.1016/S1473-3099(21)00808-2

29. Robledo J. Control de la tuberculosis multirresistente a fármacos. Biomédica Inst Nac Salud. 2019;(3):431–3.

30. Salari N, Kanjoori AH, Hosseinian-Far A, Hasheminezhad R, Mansouri K, Mohammadi M. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis. Infect Dis Poverty [Internet]. 2023;12(1):1–12. Available from: https://doi.org/10.1186/s40249-023-01107-x

31. Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol. 2022;12(September):1–18.

32. Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci [Internet]. 2023;24(6). Available from: https://pubmed.ncbi.nlm.nih.gov/36982277/

33. Singh V, Chibale K. Strategies to Combat Multi-Drug Resistance in Tuberculosis. Acc Chem Res. 2021;54(10):2361–76.

34. Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol [Internet]. 2022;20(11):685–701. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045034/

35. Reuter A, Furin J. Treatment of Infection as a Core Strategy to Prevent Rifampicin-Resistant/Multidrug-Resistant Tuberculosis. Pathogens. 2023;12(5):1–8.

36. Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov [Internet]. 2023;18(1):83–97. Available from: https://doi.org/10.1080/17460441.2023.2157811

37. Sharma D, Sharma S, Sharma J. Potential strategies for the management of drug-resistant tuberculosis. J Glob Antimicrob Resist [Internet]. 2020;22:210–4. Available from: https://doi.org/10.1016/j.jgar.2020.02.029

38. Satoshi Nakamizo, Kenji Kabashima, Metabolic reprogramming and macrophage polarization in granuloma formation, International Immunology, Volume 36, Issue 7, July 2024, Pages 329–338, https://doi.org/10.1093/intimm/dxae013

Downloads

Published

2024-01-01

How to Cite

1.
Caicedo Lozada A, Echeverría Valencia G. New Pharmacological Strategies and Their Mechanism of Action in the Treatment of Pulmonary Tuberculosis. Salud, Ciencia y Tecnología [Internet]. 2024 Jan. 1 [cited 2024 Dec. 10];4:1191. Available from: https://sct.ageditor.ar/index.php/sct/article/view/680