The Transformative Role of Technology in Medical Education

Authors

  • Justiniano Felix Palomino Quispe Universidad Cesar Vallejo (UCV). Facultad de Ingeniería, Carrera de Ingeniería Civil. Ciudad de Lima, Perú Author https://orcid.org/0000-0001-5220-0563
  • Leopoldo Choque-Flores Universidad Cesar Vallejo (UCV). Facultad de Ingeniería, Carrera de Ingeniería Civil. Ciudad de Lima, Perú Author https://orcid.org/0000-0003-0914-7159
  • Alisson Lizbeth Castro León Universidad Cesar Vallejo (UCV). Facultad de Ingeniería, Carrera de Ingeniería Civil. Ciudad de Lima, Perú Author https://orcid.org/0000-0002-3939-4436
  • Luis Villar Requis Carbajal Universidad Cesar Vallejo (UCV). Facultad de Ingeniería, Carrera de Ingeniería Civil. Ciudad de Lima, Perú Author https://orcid.org/0000-0002-3816-7047
  • Lucio-Arnulfo Ferrer-Peñaranda Universidad Nacional del Callao (UNAC). Facultad de Ciencias de la Salud, Escuela Profesional de Educación Física. Ciudad del Callao, Perú Author https://orcid.org/0000-0001-7953-925X
  • Elvira García-Huamantumba Universidad Privada Norbert Wiener (UPNW), Facultad de Ingeniería y Negocios, Carrera de Administración y Negocios Internacionales. Ciudad de Lima, Perú Author https://orcid.org/0000-0001-7773-828X
  • Roberto Carlos Dávila-Morán Universidad Continental (UC), Facultad de Ingeniería, Carrera de Ingeniería Industrial. Ciudad de Huancayo, Perú Author https://orcid.org/0000-0003-3181-8801
  • Leonardo Velarde Dávila Universidad Peruana de Ciencias Aplicadas (UPC). Facultad de Negocios, Carrera de Administración. Ciudad de Lima, Perú. Author https://orcid.org/0000-0002-8096-0196

DOI:

https://doi.org/10.56294/saludcyt2024657

Keywords:

Medical Education, Innovative Technologies, Clinical Simulators, Artificial Intelligence, Machine Learning, Clinical Practice

Abstract

Introduction: medical education has undergone a remarkable transformation driven by technological advances in recent decades. The progressive integration of digital tools and innovative technologies has significantly enriched access to educational resources and improved clinical practice.
Objective: this analysis aims to evaluate the impact of various emerging technologies in medical education and their influence on clinical practice, highlighting improvements in skills and diagnostic accuracy, as well as the personalization of learning.
Methods: a comprehensive analysis of pilot studies and systematic reviews was conducted that evaluated the impact of various technologies on medical education. Data collected from leading institutions were examined and statistical techniques were used to evaluate the effectiveness of these technological interventions.
Results: pilot studies demonstrated significant improvements in surgical skills and diagnostic accuracy of medical students who benefited from virtual reality and clinical simulators. The application of artificial intelligence and machine learning has also improved the interpretation of medical data and early diagnosis of diseases.
Conclusions: the continued integration of emerging technologies into medical education shows promising potential to personalize learning and improve patient care. However, challenges such as data security and appropriate training must be addressed to ensure successful implementation and lasting impact on clinical practice and medical education

References

1. Cook DA, Hatala R, Brydges R, Zendejas B, Szostek JH, Wang AT, et al. Technology-Enhanced Simulation for Health Professions Education: A Systematic Review and Meta-analysis. JAMA. 2011;306(9). http://doi.org/10.1001/jama.2011.1234

2. Almousa O, Zhang R, Dimma M, Yao J, Allen A, Chen L, et al. Virtual Reality Technology and Remote Digital Application for Tele-Simulation and Global Medical Education: An Innovative Hybrid System for Clinical Training. Simulation & Gaming. octubre de 2021;52(5):614-34.

3. Kyaw BM, Saxena N, Posadzki P, Vseteckova J, Nikolaou CK, George PP, et al. Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J Med Internet Res. 2019;21(1):e12959.

4. George PP, Papachristou N, Belisario JM, Wang W, Wark PA, Cotic Z, et al. Online eLearning for undergraduates in health professions: A systematic review of the impact on knowledge, skills, attitudes and satisfaction. J Glob Health. 2014;4(1).

5. Bloomrosen M, Starren J, Lorenzi NM, Ash JS, Patel VL, Shortliffe EH. Anticipating and addressing the unintended consequences of health IT and policy: a report from the AMIA 2009 Health Policy Meeting. Journal of the American Medical Informatics Association. 1 de enero de 2011;18(1):82-90.

6. Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc. 2011;122:48-58.

7. Ellaway R, Masters K. AMEE Guide 32: e-Learning in medical education Part 1: Learning, teaching and assessment. Medical Teacher. enero de 2008;30(5):455-73.

8. Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T, et al. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. The Lancet. diciembre de 2010;376(9756):1923-58.

9. Veloz Montano M de las N, Keeling Álvarez M. The educational and pedagogical intervention in scientific research. Community and Interculturality in Dialogue. 2023;3:70. https://doi.org/10.56294/cid202370

10. Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, et al. Virtual Reality Training Improves Operating Room Performance: Results of a Randomized, Double-Blinded Study. Annals of Surgery. octubre de 2002;236(4):458-64.

11. Portelli M, Bianco S, Bezzina T, Abela J. Virtual reality training compared with apprenticeship training in laparoscopic surgery: a meta-analysis. annals. noviembre de 2020;102(9):672-84.

12. Ziv A, Wolpe PR, Small SD, Glick S. Simulation-Based Medical Education: An Ethical Imperative. Academic Medicine. agosto de 2003;78(8):783-8.

13. McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Does Simulation-Based Medical Education With Deliberate Practice Yield Better Results Than Traditional Clinical Education? A Meta-Analytic Comparative Review of the Evidence: Academic Medicine. junio de 2011;86(6):706-11.

14. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.

15. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380(14):1347-58.

16. Wartman SA, Combs CD. Reimagining Medical Education in the Age of AI. AMA J Ethics. 2019;21(2):E146-152

17. Mosa ASM, Yoo I, Sheets L. A Systematic Review of Healthcare Applications for Smartphones. BMC Med Inform Decis Mak. 2012;12(1):67.

18. Ventola CL. Mobile devices and apps for health care professionals: uses and benefits. P T. 2014;39(5):356-64.

19. Buijink AWG, Visser BJ, Marshall L. Medical apps for smartphones: lack of evidence undermines quality and safety. Evid Based Med. 2013;18(3):90-2.

20. Kumar S, Nilsen WJ, Abernethy A, Atienza A, Patrick K, Pavel M, et al. Mobile Health Technology Evaluation. American Journal of Preventive Medicine. 2013;45(2):228-36.

21. Wootton R. Telemedicine and isolated communities: A UK perspective. J Telemed Telecare. 1999;5(2_suppl):27-34.

22. Piwek L, Ellis DA, Andrews S, Joinson A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016;13(2):e1001953.

23. Williams AM, Bhatti UF, Alam HB, Nikolian VC. The role of telemedicine in postoperative care. mHealth. mayo de 2018;4:11-11.

Downloads

Published

2024-01-01

Issue

Section

Short communications

How to Cite

1.
Palomino Quispe JF, Choque-Flores L, Castro León AL, Requis Carbajal LV, Ferrer-Peñaranda L-A, García-Huamantumba E, et al. The Transformative Role of Technology in Medical Education. Salud, Ciencia y Tecnología [Internet]. 2024 Jan. 1 [cited 2024 Sep. 10];4:657. Available from: https://sct.ageditor.ar/index.php/sct/article/view/643