Effectiveness of supplemented micronutrients on inflammatory markers in patients infected with covid-19. A systematic review
DOI:
https://doi.org/10.56294/saludcyt2024781Keywords:
Covid-19, Inflammatory markers, Vitamin D, Vitamin C, Interleukin-6, Supplementation, TreatmentAbstract
Introduction: Covid-19 is a recently discovered disease, originating in Wuhan, China at the end of 2019, this virus being responsible for the current pandemic. Due to the spread of the virus, it is of interest to evaluate the available evidence on the role of micronutrient supplementation.
Objective: characterize the effectiveness of supplemented micronutrients on inflammatory markers in Covid-19 patients.
Methods: a systematic review of 3 053 studies was carried out through a search in electronic databases. Studies without variable results, without a comparison group and incomplete information were excluded.
Results: three of which proposed supplementation with vitamin C and D in critically ill patients with Covid-19 were found. Two clinical trials evaluate vitamin D supplementation, showing a decrease in the response variables (interleukin 6, ferritin and CRP), while the third evaluated vitamin C in relation to the admission of patients to the ICU.
Conclusions: with little evidence found, it is not possible to affirm the idea that the micronutrients studied help reduce the concentration of inflammatory markers
References
1. FDA. Fact sheet for healthcare providers G Medical VSMS ECG Patch. 2020;1–36. Consulta el 03 12 2022. Disponible en: https://www.fda.gov/media/138104/download
2. Sant’Ana G, Imoto AM, Amorim FF, Taminato M, Peccin MS, Santana LA, et al. Infection and death in healthcare workers due to COVID-19: a systematic review. ACTA Paul Enferm. 2020;33: eAPE20200107. doi: http://dx.doi.org/10.37689/actaape/2020AO0107
3. Tabatabaeizadeh SA. Airborne transmission of COVID-19 and the role of face mask to prevent it: a systematic review and meta-analysis. Eur J Med Res. 2021;26(1):1. doi: https://doi.org/10.1186/s40001-020-00475-6
4. Siddell SG, Anderson R, Cavanagh D, Fujiwara K, Klenk HD, Macnaughton MR, et al. Coronaviridae 1. 1983;189:181–189.
5. Reina J, Reina N. El coronavirus causante del síndrome respiratorio de Oriente Medio. Med Clin (Barc). 2015;145(12):529-531
6. Monroy-Gómez J, Torres-Fernández O. Effects of severe acute respiratory syndrome (SARS-CoV) and Middle East respiratory syndrome (MERS CoV) coronaviruses on the nervous system. What to expect from SARS-CoV-2? Biomedical. 2020; 40:173–179.
7. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué VMF. Characterization of legal drug use in older adult caregivers who are victims of violence. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:13-13. https://doi.org/10.56294/piii202313.
8. Nafis E, Priesemann V, Balling R, Bauer S, Beutels P, Calero A, et al. A look into the future of the COVID-19 pandemic in Europe: an expert consultation. The Lancet Regional Health - Europe, 2021, 8: 100185. doi: https://doi.org/10.1016/j.lanepe.2021.100185
9. Sánchez J, Miranda C, Castillo C, Arellano N, Tixe T. Covid-19: fisiopatología, historia natural y diagnóstico. Revista Eugenio Espejo. 2021; 15 (2): 98-108.
10. Tapia P. M, Méndez M, Seguel W, Robles C, Hurtado S, Ávila R, et al. Prevention in the transmission of Coronavirus-19: how prepared are health personnel in Chile? Rev Med Chil. 2020;148:1589–1597.
11. Chansaenroj J, Yorsaeng R, Posuwan N, Puenpa J, Sudhinaraset N, Chirathaworn C, Poovorawan Y. Detection of SARS-CoV-2-specific antibodies via rapid diagnostic immunoassays in COVID-19 patients. Virol J. 2021;18(1):52. doi: https://doi.org/10.1186/s12985-021-01530-2
12. Caulley L, Shaw J, Corsten M, Hua N, Angel JB, Poliquin G, Whelan J, Antonation K, Johnson-Obaseki S. Salivary testing of COVID-19: evaluation of serological testing following positive salivary results. BMC Infect Dis. 2021 May 4;21(1):410. doi: https://doi.org/10.1186/s12879-021-06108-5
13. Gestoso-Pecellín L, García-Flores Y, González-Quintana P, Marrero-Arencibia JL. Recommendations and use of the different types of tests for detection of infection by SARS-COV-2. Clinical Nursing. 2021;31:S40–48.
14. Lamas-Barreiro JM, Alonso-Suárez M, Fernández-Martín JJ, Saavedra-Alonso JA. Angiotensin II suppression in SARS-CoV-2 infection: a therapeutic approach. Nefrologia. 2020;40:213–216.
15. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–879.
16. Santos-López G, Cortés-Hernández P, Vallejo-Ruiz V, Reyes-Leyva J. SARS-CoV 2: generalities, origin and advances in treatment. Gac Mexico. 2021;157:88–93.
17. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418.
18. Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. 2020;395(10230):1111. doi: https://doi.org/10.1016/S0140-6736(20)30691-7
19. Ali RMM, Ghonimy MBI. Post-COVID-19 pneumonia lung fibrosis: a worrisome sequelae in surviving patients. Egypt J Radiol Nucl Med. 2021;52(1):101. doi: https://doi.org/10.1186/s43055-021-00484-3
20. Gómez H, Galbete A, Álvarez Galván B, Caballero García P, Vicaría Fernández I. Residual lesions on chest-Xray after SARS-CoV-2 pneumonia: Identification of risk factors. Med Clin (Barc). 2022 May 13;158(9):418-421.
21. Yasin R, Gomaa AAK, Ghazy T, Hassanein SA, Ibrahem RAL, Khalifa MH. Predicting lung fibrosis in post-COVID-19 patients after discharge with follow-up chest CT findings. Egypt J Radiol Nucl Med. 2021;52(1):118. doi: https://doi.org/10.1186/s43055-021-00495-0
22. Shakoor H, Feehan J, Mikkelsen K, Al Dhaheri AS, Ali HI, Platat C, Ismail LC, Stojanovska L, Apostolopoulos V. Be well: A potential role for vitamin B in COVID-19. Maturitas. 2021 Feb;144:108-111. doi: https://doi.org/10.1016/j.maturitas.2020.08.007
23. Bae M, Kim H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. Molecules. 2020;25(22):5346. doi: https://doi.org/10.3390/molecules25225346
24. Topal Hançer A, Yilmaz P, Yilmaz M. New coronavirus (2019-nCoV/COVID-19) and vitamin C. Vol. 40, Turkiye Klinikleri J Med Sci. 2020;40(2):260-264.
25. Sassi F, Tamone C, D’amelio P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients. 2018;10(11):1656. doi: https://doi.org/10.3390/nu10111656
26. Machuca-Contreras F, Lepez CO, Canova-Barrios C. Influence of virtual reality and augmented reality on mental health. Gamification and Augmented Reality 2024;2:25-25. https://doi.org/10.56294/gr202425.
27. Al-Daghri NM, Amer OE, Alotaibi NH, Aldisi DA, Enani MA, Sheshah E, et al. Vitamin D status of Arab Gulf residents screened for SARS-CoV-2 and its association with COVID-19 infection: a multi-centre case–control study. J Transl Med. 2021;19(1):1–9.
28. Pinheiro MM, Fabbri A, Infante M. Cytokine storm modulation in COVID-19: a proposed role for vitamin D and DPP-4 inhibitor combination therapy (VIDPP-4i). Immunotherapy. 2021;13(9):753-765.
29. Alzaben AS. The potential influence of vitamin a, c, and d and zinc supplements on the severity of covid-19 symptoms and clinical outcomes: An updated review of literature. Curr Res Nutr Food Sci. 2020;8:703–14.
30. Oyagbemi AA, Ajibade TO, Aboua YG, Gbadamosi IT, Adedapo ADA, Aro AO, et al. Potential health benefits of zinc supplementation for the management of COVID-19 pandemic. J Food Biochem. 2021;45:1–12.
31. Zhang HY, Zhang AR, Lu QB, Zhang XA, Zhang ZJ, Guan XG, Che TL, Yang Y, Li H, Liu W, Fang LQ. Association between fatality rate of COVID-19 and selenium deficiency in China. BMC Infect Dis. 2021;21(1):452. doi: https://doi.org/10.1186/s12879-021-06167-8
32. Corrao S, Mallaci Bocchio R, Lo Monaco M, Natoli G, Cavezzi A, Troiani E, Argano C. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients. 2021;13(4):1261. doi: https://doi.org/10.3390/nu13041261
33. Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clin (Barc). 2010;135(11):507-511.
34. Needleman I. CONSORT. Consolidated Standards of Reporting Trials. Br Dent J. 1999;186(5):207. doi: https://doi.org/10.1038/sj.bdj.4800065a
35. Centro Cochrane Iberoamericano translators. Cochrane Handbook of Systematic Reviews of Interventions. 2012; version 5.3
36. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:2021. doi: https://doi.org/10.1136/bmj.n71
37. Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, Alcalá Díaz JF, López Miranda J, Bouillon R, Quesada Gomez JM. "Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study". J Steroid Biochem Mol Biol. 2020;203:105751. doi: https://doi.org/10.1016/j.jsbmb.2020.105751.
38. Lakkireddy M, Gadiga SG, Malathi RD, Karra ML, Raju ISSVPM, Ragini, Chinapaka S, Baba KSSS, Kandakatla M. Impact of daily high dose oral vitamin D therapy on the inflammatory markers in patients with COVID 19 disease. Sci Rep. 2021;11(1):10641. doi: https://doi.org/10.1038/s41598-021-90189-4
39. Liu F, Zhu Y, Zhang J, Li Y, Peng Z. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open. 2020 Jul 8;10(7):e039519. doi: https://doi.org/10.1136/bmjopen-2020-039519
40. Cuervo MED. Exclusive breastfeeding. Factors that influence its abandonment. AG Multidisciplinar 2023;1:6-6. https://doi.org/10.62486/agmu20236.
41. MSD Manual Professional version. Representative Laboratory Reference Values: Blood, Plasma, and Serum. Consulta el 03 12 2021. Disponible en: https://www.msdmanuals.com/professional/multimedia/table/representative-laboratory-reference-values-blood-plasma-and-serum
42. Baladia E, Pizarro AB, Ortiz-Muñoz L, Rada G. Vitamin C for COVID-19: A living systematic review. Medwave. 2020; 20 (6): e7978. doi: https://doi.org/10.5867/medwave.2020.06.7978
43. Varsavsky M, Rozas Moreno P, Becerra Fernández A, Luque Fernández I, Quesada Gómez JM, Ávila Rubio V, et al. Recomendaciones de vitamina D para la población general. Endocrinol Diabetes y Nutr. 2017;64:7–14.
44. Niño DA, Mora-Plazas M, Poveda E. Vitamin D, its possible effects on immune function and the response to COVID-19: an exploratory systematic review. Rev Nutr Clinic and Metab. 2021;4:73–97.
45. Reyes Pérez RA, Puente Nieto AV, Martínez-Cuazitl A, Montelongo Mercado EA, Rodríguez Tort A. Vitamin D deficiency is a risk factor for mortality in COVID-19 patients. Rev Sanid Milit. 2020;74:106–113
46. Walter O, Vásquez-Bonilla MD, Orozco R, Argueta V, Sierra M, Zambrano L, et al. A review of the main histopathological findings in coronavirus disease 2019. Human Pathology. 2020; 105: 74-83
47. Feyaerts AF, Luyten W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition. 2020;79-80:110948. doi: https://doi.org/10.1016/j.nut.2020.110948
48. Villagrán M, Muñoz M, Díaz F, Troncoso C, Celis-Morales C, Mardones L. A current look at vitamin C in health and disease. Rev Chil Nutr. 2019;46:800–808.
49. Goyenechea E, Parra MD, Martínez Hernández JA. Implication of IL-6 and its -174G> C polymorphism in the control of body weight and in the metabolic complications associated with obesity. An Sist Sanit Navar. 2005;28:357–366.
50. Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 2020;130(9):4694–4703.
51. Huang L, Zhao X, Qi Y, Li H, Ye G, Liu Y, et al. Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cell Mol Immunol. 2020;17:1092–1094.
52. Alejandro G, Maribel A, Beatriz F, Enrique C. Evaluation of vitamin D, biomarkers of inflammation and cardiovascular risk factors in patients with arterial hypertension. Arch Venez Farmacol and Ter. 2018;37:360–367.
53. Amezcua-Guerra LM, Del Villar RS, Parra RB. C-reactive protein: Cardiovascular aspects of an acute phase protein.Arch Cardiol Mex. 2007;77:58–66.
54. Urquizo Ayala, Guillermo; Arteaga Coarti R. C-reactive protein in the diagnosis and prognosis of infectious diseases in gastric patients. Rev medica la paz. 2017;23:69–73.
55. Brissot P. Hyperferritinemia. Hematologie. 2015;21:139–145.
56. Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COVID-19. Rev Panam Salud Publica/Pan Am J Public Heal. 2020;44:2019–2020.
57. Arsanios D, Serrano S, Espinel B, Quintero E, Rincón MJ, Bastidas A. Iron deficiency without anemia, more than a laboratory finding. Univ Médica. 2018;59 (4):1–22.
58. Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29:401–409.
59. Cheng L, Li H, Li L, Liu C, Yan S, Chen H, et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal. 2020;34:1–18.
Published
Issue
Section
License
Copyright (c) 2024 Valentina Rail, Nicole Seguel , Laura Quezada , Miguel Ángel López-Espinoza (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.