E-waste: a global threat with an impact on nutrition
DOI:
https://doi.org/10.56294/saludcyt2024.591Keywords:
e-waste, Nutrients, Metabolism, Nutrition, ContaminationAbstract
Introduction: The generation and increase of electronic waste (e-waste) represents a focus of attention in the biomedical area due to the devastating impact on health. The importance and study ranges from toxicological understanding in adults to teratological effects in neonates. Studies have shown that e-waste affects the uptake of micronutrients, in addition to environmental contamination. Objective: To describe the main nutritional effects of e-waste in vulnerable populations. Methods: A retrospective descriptive model was performed following the PRISMA model, including manuscripts that were published since 2015. Results: Of the total number of articles identified, 21 articles were selected that met the established criteria. E-waste has a great impact on the environment by contaminating soil, food, vegetables, and air. Through these routes, children, pregnant women, and recyclers can acquire different toxic compounds. The main affectations described are alterations in iron metabolism and glycemic index, metabolic alterations, changes in the microbiota, affectation in the synthesis of antibodies and metabolic activity of reparative enzymes. Conclusions: Personnel in nutrition and related areas should understand the mechanism of action of e-waste, nutrient utilization, and the effect of metals and compounds derived from e-waste to avoid nutritional deficiencies
References
1. Becerra DK, Hernández A, Díaz EB, Cedano KG, Martínez H. Residuos de aparatos eléctricos y electrónicos (RAEE): Impacto social, ambiental, gestión y metodologías sobre su manejo. ENERLAC. [Internet]. 2020 [citado el 22 de enero de 2024]; 4(2):108-31. Disponible en: https://enerlac.olade.org/index.php/ENERLAC/article/view/127
2. Okeme JO, Arrandale VH. Electronic Waste Recycling: Occupational Exposures and Work-Related Health Effects. Curr Environ Health Rep. [Internet]. 2019 [citado el 22 de enero de 2024]; 6(4):256-268. doi: 10.1007/s40572-019-00255-3
3. Orish Ebere Orisakwe, Chiara Frazzoli, Cajetan Elochukwu Ilo, Benjamin Oritsemuelebi; Carga de salud pública de los electronicos en Africa. Rev Salud y Contaminación. [Internet]. 2019 [citado el 22 de enero de 2024]; 9(22):190610. doi: https://doi.org/10.5696/2156-9614-9.22.190610
4. Ji X, Yang M, Wan A, Yu S, Yao Z. Bioleaching of Typical Electronic Waste-Printed Circuit Boards (WPCBs): A Short Review. Int J Environ Res Public Health. [Internet]. 2022 [citado el 22 de enero de 2024]; 19(12):7508. doi: 10.3390/ijerph19127508
5. Aristizábal-Alzate CE, González-Manosalva JL, Vargas AF. Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: una alternativa para la obtención de metales preciosos y metales para la industria. TecnoLógicas. [Internet]. 2021 [citado el 22 de enero de 2024]; 24(51),186-205. https://doi.org/10.22430/22565337.1740
6. Issah I, Arko-Mensah J, Agyekum TP, Dwomoh D, Fobil JN. Electronic waste exposure and DNA damage: a systematic review and meta-analysis. Rev Environ Health. [Internet]. 2021 [citado el 22 de enero de 2024]; 29;38(1):15-31. doi: 10.1515/reveh-2021-0074
7. Roy H, Rahman TU, Suhan MBK, Al-Mamun MR, Haque S, Islam MS. A comprehensive review on hazardous aspects and management strategies of electronic waste: Bangladesh perspectives. Heliyon. [Internet]. 2022 [citado el 30 de enero de 2024]; 8(7):e09802. doi: 10.1016/j.heliyon.2022.e09802
8. Zambrano CA, Macías JC, Medina ND. Buenas prácticas en el manejo de residuos electrónicos en América Latina. Rev Estudios del Desarrollo Social: Cuba y América Latina. [Internet]. 2022 [citado el 30 de enero de 2024]; 10(1):64-80. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2308-01322022000100005
9. Pascuas Y, Correa L, Marlés C. Residuos electrónicos: análisis de las implicaciones socioambientales y alternativas frente al metabolismo urbano. Ciencia, docencia y tecnología. [Internet]. 2018 [citado el 30 de enero de 2024]; 29(56):242-252. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-17162018000100011
10. Priya A, Hait S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res Int. [Internet]. 2017 [citado el 30 de enero de 2024]; 24(8):6989-7008. doi: 10.1007/s11356-016-8313-6
11. Peecher JS, Schecter AJ, Lu H, Quynh HT, Stromberg A, Weng J, Crandall R, Birnbaum LS. Biomonitoring of Polybrominated Dioxins & Furans, Polychlorinated Dioxins & Furans, and Dioxin Like Polychlorinated Biphenyls in Vietnamese Female Electronic Waste Recyclers. J Occup Environ Med. [Internet]. 2022 [citado el 30 de enero de 2024]; 64(9):742-747. doi: 10.1097/JOM.0000000000002506
12. Rocha-Gutiérrez Beatriz Adriana, Peralta-Pérez María del Rosario, Zavala-Díaz de la Serna Francisco Javier. Revisión global de los contaminantes emergentes PBDE y el caso particular de México. Rev. Int. Contam. Ambient. [Internet]. 2018 [citado el 30 de enero de 2024]; 31(3):311-320. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992015000300010&lng=es
13. Kim SS, Xu X, Zhang Y, Zheng X, Liu R, Dietrich KN, Reponen T, Xie C, Sucharew H, Huo X, Chen A. Birth outcomes associated with maternal exposure to metals from informal electronic waste recycling in Guiyu, China. Environ Int. [Internet]. 2020 [citado el 30 de enero de 2024]; 137:105580. doi: 10.1016/j.envint.2020.105580
14. Word Health Organization (WHO). Soaring e-waste affects the health of millions of children, WHO warns. 2021. Disponible: https://www.who.int/es/news/item/15-06-2021-soaring-e-waste-affects-the-health-of-millions-of-children-who-warns
15. Quiroga D, Fernández R, Paris E. Salud Ambiental Infantil : manual para enseñanza de grado en escuelas de medicina. Ministerio de Salud de la Nación. Organización Panamericana de la Salud 2010. 1a ed. Buenos Aires. Disponible: https://bancos.salud.gob.ar/sites/default/files/2018-10/0000000271cnt-s12-manual-universitario-salud-ambiental-infantil.pdf
16. Orisakwe OE, Frazzoli C, Ilo CE, Oritsemuelebi B. Public Health Burden of E-waste in Africa. J Health Pollut. [Internet]. 2019 [citado el 30 de enero de 2024]; 9(22):190610. doi: 10.5696/2156-9614-9.22.190610
17. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, Norman RE. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. [Internet]. 2013 [citado el 30 de enero de 2024]; 1(6):e350-61. doi: 10.1016/S2214-109X(13)70101-3
18. Saha L, Kumar V, Tiwari J, Rawat S, Singh J, Bauddh K. Electronic waste and their leachates impact on human health and environment: Global ecological threat and management. Enviro Technol Innov. [Internet]. 2021 [citado el 30 de enero de 2024]; 24,102049. https://doi.org/10.1016/j.eti.2021.102049
19. Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, Sly PD, Gorman J, Carpenter DO. E-Waste in Africa: A Serious Threat to the Health of Children. Int J Environ Res Public Health. [Internet]. 2021 [citado el 09 de febrero de 2024]; 18(16):8488. doi: 10.3390/ijerph18168488
20. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. [Internet]. 2021 [citado el 09 de febrero de 2024]; 372:71. https://doi.org/10.1186/s13643-021-01626-4
21. Wachinou AP, Kêdoté NM, Padonou G, Adè S, Darboux J, Tohi M, et al. Respiratory Disorders Related to e-Waste Exposure among Workers in the Informal Sector in a Sub-Saharan African City: An Exposed Nonexposed Study. Pulm Med. [Internet]. 2022 [citado el 09 de febrero de 2024]; 24:9968897. doi: 10.1155/2022/9968897
22. Chen A, Dietrich KN, Huo X, Ho SM. Developmental neurotoxicants in e-waste: an emerging health concern. Environ Health Perspect. [Internet]. 2011 [citado el 09 de febrero de 2024]; 119(4):431-8. doi: 10.1289/ehp.1002452
23. Yan X, Li SY, Wang MH, Xu RF, Zheng J, Ren MZ. [Liver and Kidney Function of E-waste Dismantling Workers and Potential Influencing Factors]. Huan Jing Ke Xue. [Internet]. 2018 [citado el 09 de febrero de 2024]; 39(2):953-960. doi: 10.13227/j.hjkx.201708101
24. Henríquez-Hernández LA, Boada LD, Carranza C, Pérez-Arellano JL, González-Antuña A, Camacho M, et al. Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants. Environ Int. [Internet]. 2017 [citado el 09 de febrero de 2024]; 109:20-28. doi: 10.1016/j.envint.2017.08.023
25. Takyi SA, Basu N, Arko-Mensah J, Dwomoh D, Nti AAA, Kwarteng L, et al. Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. Int J Environ Res Public Health. [Internet]. 2020 [citado el 09 de febrero de 2024]; 17(24):9575. doi: 10.3390/ijerph17249575
26. Takyi SA, Basu N, Arko-Mensah J, Botwe P, Amoabeng Nti AA, Kwarteng L, et al. Micronutrient-rich dietary intake is associated with a reduction in the effects of particulate matter on blood pressure among electronic waste recyclers at Agbogbloshie, Ghana. BMC Public Health. [Internet]. 2020 [citado el 09 de febrero de 2024]; 20(1):1067. doi: 10.1186/s12889-020-09173-8
27. Dawud F, Takyi SA, Arko-Mensah J, Basú N, Egbi G, Ofori-Attah E, et al. Relación entre la exposición a metales, la ingesta dietética de macronutrientes y los niveles de glucosa en sangre de recicladores informales de desechos electrónicos en Ghana. En t. J. Medio Ambiente. Res. Salud Pública. [Internet]. 2022 [citado el 09 de febrero de 2024]; 19:12768. doi: 10.3390/ijerph191912768
28. Li M, Huo X, Pan Y, Cai H, Dai Y, Xu X. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area. Environ Int. [Internet]. 2018 [citado el 09 de febrero de 2024]; 111:362-371. doi: 10.1016/j.envint.2017.09.016
29. Zeng X, Xu X, Boezen HM, Vonk JM, Wu W, Huo X. Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children. Environ Pollut. [Internet]. 2017 [citado el 09 de febrero de 2024]; 230:838-848. doi: 10.1016/j.envpol.2017.07.014
30. Zeng X, Xu X, Zhang Y, Li W, Huo X. Chest circumference and birth weight are good predictors of lung function in preschool children from an e-waste recycling area. Environ Sci Pollut Res Int. [Internet]. 2017 [citado el 23 de febrero de 2024]; 24(28):22613-22621. doi: 10.1007/s11356-017-9885-5
31. Wang H, Huang P, Zhang R, Feng X, Tang Q, Liu S, et al. Effect of lead exposure from electronic waste on haemoglobin synthesis in children. Int Arch Occup Environ Health. [Internet]. 2021 [citado el 23 de febrero de 2024]; 94(5):911-918. doi: 10.1007/s00420-020-01619-1
32. Zeng X, Zeng Z, Wang Q, Liang W, Guo Y, Huo X. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure. J Hazard Mater. [Internet]. 2022 [citado el 23 de febrero de 2024]; 15;434:128842. doi: 10.1016/j.jhazmat.2022.128842
33. Xu X, Liao W, Lin Y, Dai Y, Shi Z, Huo X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Environ Geochem Health. [Internet]. 2018 [citado el 23 de febrero de 2024]; 40(4):1481-1494. doi: 10.1007/s10653-017-9997-3
34. Lin X, Xu X, Zeng X, Xu L, Zeng Z, Huo X. Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children. Environ Pollut. [Internet]. 2017 [citado el 23 de febrero de 2024]; 220:354-363. doi: 10.1016/j.envpol.2016.09.071
35. Soetrisno FN, Delgado-Saborit JM. Chronic exposure to heavy metals from informal e-waste recycling plants and children's attention, executive function and academic performance. Sci Total Environ. [Internet]. 2020 [citado el 23 de febrero de 2024]; 15;717:137099. doi: 10.1016/j.scitotenv.2020.137099. Epub 2020 Feb 4. PMID: 32092800.
36. Zhang Y, Xu X, Chen A, Davuljigari CB, Zheng X, Kim SS, et al. Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod Toxicol. [Internet]. 2018 [citado el 23 de febrero de 2024]; 75:49-55. doi: 10.1016/j.reprotox.2017.11.003
37. Mishra S. Perceived and Manifested Health Problems among Informal E-waste Handlers: A Scoping Review. Indian J Occup Environ Med. [Internet]. 2019 [citado el 05 de abril de 2024]; 23(1):7-14. doi: 10.4103/ijoem.IJOEM_231_18
38. Li W, Achal V. Environmental and health impacts due to e-waste disposal in China - A review. Sci Total Environ. [Internet]. 2020 [citado el 05 de abril de 2024]; 737:139745. doi: 10.1016/j.scitotenv.2020.139745
39. Anh HQ, Nam VD, Tri TM, Ha NM, Ngoc NT, Mai PTN, Anh DH, Minh NH, Tuan NA, Minh TB. Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: a comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure. Environ Geochem Health. [Internet]. 2017 [citado el 05 de abril de 2024]; 39(4):935-954. doi: 10.1007/s10653-016-9865-6
40. Li X, Duan Y, Sun H, Zhang P, Xu J, Hua X, et al. Human exposure levels of PAEs in an e-waste recycling area: Get insight into impacts of spatial variation and manipulation mode. Environ Int. [Internet]. 2019 [citado el 05 de abril de 2024]; 133:105143. doi: 10.1016/j.envint.2019.105143
41. Pócsi I, Dockrell ME, Price RG. Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health. Biomark Insights. [Internet]. 2022 [citado el 05 de abril de 2024]; 17:11772719221111882. doi: 10.1177/11772719221111882
42. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, et al. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. [Internet]. 2013 [citado el 05 de abril de 2024]; 1(6):e350-61. doi: 10.1016/S2214-109X(13)70101-3
43. Rautela R, Arya S, Vishwakarma S, Lee J, Kim KH, Kumar S. E-waste management and its effects on the environment and human health. Sci Total Environ. [Internet]. 2021 [citado el 05 de abril de 2024]; 773:145623. doi: 10.1016/j.scitotenv.2021.145623
44. Antuña A, Camacho M, Henríquez-Hernández LA, Boada LD, Almeida-González M, Zumbado M, Luzardo OP. Simultaneous quantification of 49 elements associated to e-waste in human blood by ICP-MS for routine analysis. MethodsX. [Internet]. 2017 [citado el 05 de abril de 2024]; 4:328-334. doi: 10.1016/j.mex.2017.10.001
45. Heacock M, Trottier B, Adhikary S, Asante KA, Basu N, Brune M.-N., et al. Estrategias de prevención e intervención para reducir la exposición a los desechos electrónicos. Rev. Medio Ambiente. Salud. [Internet]. 2018 [citado el 05 de abril de 2024]; 33:219–228. doi: 10.1515/reveh-2018-0014
46. Basu N, Ayelo PA, Djogbénou LS, Kedoté M, Lawin H, Tohon H, et al. Riesgos para la salud ocupacional y ambiental asociados con las actividades del sector informal: caso seleccionado Estudios de África Occidental. Nueva Solucion. A J. Medio ambiente. ocupar Política de Salud. [Internet]. 2016 [citado el 25 de abril de 2024]; 26:253–270. doi: 10.1177/1048291116651726
47. Takyi SA, Basu N, Arko-Mensah J, Dwomoh D, Nti AAA, Kwarteng L, Acquah AA, Robins TG, Fobil JN. Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. Int J Environ Res Public Health. [Internet]. 2020 [citado el 25 de abril de 2024]; 17(24):9575. doi: 10.3390/ijerph17249575
48. GBD 2017 Risk Factors Collaborators Evaluación de riesgo comparativa global, regional y nacional de 84 riesgos conductuales, ambientales, ocupacionales y metabólicos o grupos de riesgos, 1990–2016: un análisis sistemático para el Estudio de carga global de enfermedad 2016. Lancet. [Internet]. 2016 [citado el 25 de abril de 2024]; 390:1345–1422
49. Erickson AC, Arbor L. The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development. J. Medio Ambiente. Salud pública. [Internet]. 2014 [citado el 25 de abril de 2024]; 2014:901017. doi: 10.1155/2014/901017
50. Miller CN, Rayalam S. El papel de los micronutrientes en la respuesta a los contaminantes del aire ambiental: Mecanismos potenciales y sugerencias para el diseño de la investigación. J. Toxicol. Reinar. Salud Parte B. [Internet]. 2017 [citado el 25 de abril de 2024]; 20:38–53. doi: 10.1080/10937404.2016.1261746
51. Hennig B., Ettinger AS, Jandacek RJ, Koo S., McClain C., Seifried H., Silverstone A., Watkins B., Suk WA Uso de la nutrición para la intervención y prevención contra la toxicidad química ambiental y enfermedades asociadas. Reinar. Perspectiva de Salud. [Internet]. 2007 [citado el 25 de abril de 2024]; 115:493-495. doi: 10.1289/ehp.9549
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jazmín Elena Castro Jalca , Edwin Joao Merchán Carreño , Karina Virginia Mero Suárez , María Geomara Moreira (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.