Infectious diseases and global security: Analysis of global control and vaccination strategies
DOI:
https://doi.org/10.56294/saludcyt2024.582Keywords:
Coronavirus Infection, Epidemiology, International Cooperation, Pandemic, Prevention and ControlAbstract
Introduction: Given the recent experience with the COVID-19 vaccine campaign, an optimal global policy to control future pandemics and ensure infectious security globally is highly relevant.
Objective: The study aims to determine the optimal vaccination strategy to reduce COVID-19 morbidity and mortality during a pandemic.
Methods: A systematic search of studies on infectious disease control and vaccination strategies for the period 2000-2023 in PubMed, Scopus, Web of Science and Google Scholar databases using keywords was conducted for the review. Relevant publications, data extraction and systematisation were selected.
Results: The findings of the analysis highlight the importance of integrated interventions in global vaccination strategies, including health systems strengthening, innovative technologies for outbreak detection and international collaboration. Vaccination, as an effective preventive measure, significantly reduces the spread of infectious diseases. Vaccination with different types of vaccines has been shown to improve immune response compared to the use of the same type of vaccine. This approach, where the first and second vaccine doses are different, may increase the effectiveness of the immune response.
Conclusions: Studies confirm that vaccination reduces the number of cases and deaths, reducing the economic burden. A variety of vaccines, including mRNA, vector, and inactivated vaccines, provide high efficacy in preventing COVID-19 infection and mortality, especially when a heterologous vaccination regimen is used. This review identifies the most effective infectious disease control strategies for the development of global health recommendations
References
1. Mamedov MN. (2022). COVID-19: Global tendencies and vaccination effectiveness in patients with noncommunicable diseases. International Heart and Vascular Disease Journal, 10(33.1), 5-9.
2. Zharasova KT, Ryskulova АR, Baymuratova МА, & Timuruly Е. (2024). Key aspects of improving medical care for patients with polyradiculoneuropathy (literary review). Medicine, Science and Education, 4, 15-22. https://journal.ksph.edu.kz/2024/01/21/%d0%b2%d1%8b%d0%bf%d1%83%d1%81%d0%ba-%e2%84%964-2023/
3. Zhumambayeva R, Zhumabayeva S, Kasymova А, & Madrakhimova Zh. (2021). Quality of life of COVID-19 patients. Astana Medical Journal, 110(4), 28-35. https://amu.edu.kz/upload/iblock/55c/55c73f9b8c57e15231f28a73b3ff863c.pdf
4. Abdrakhmanova Zh, & Bazarova А. (2022). Coronavirus infection SARS-Cov-2(COVID-19) in patients with type 2 diabetes mellitus and the effect of glucose-lowering therapy on disease outcomes. Astana Medical Journal, 111(1), 37-45. https://amu.edu.kz/upload/iblock/14d/14d775609bdf6c7b8926a3141df0e4ec.pdf
5. Zhurabekova G, Mereke А, & Oralkhan J. (2022). Clinical and laboratory observations of the course of SARS-Cov-2 in pregnant women in Almaty. Astana Medical Journal, S1, 243-251. https://amu.edu.kz/upload/iblock/5c9/5c9902b85638c81a1eab0efda413d8c1.pdf
6. Zhumabayeva D, & Molchanov SN. (2021). Comparative analysis of Kazakhstani and Russian vaccines against COVIDS 19. German International Journal of Modern Science, 1(19), 41-44. https://dizzw.com/wp-content/uploads/2021/10/Deutsche-internationale-Zeitschrift-f%C3%BCr-zeitgen%C3%B6ssische-Wissenschaft-%E2%84%9619-part-1-2021-.pdf
7. Sharma A, Ahmad Farouk I, & Lal SK. (2021). COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, 13(2), 202. https://doi.org/10.3390/v13020202
8. Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, El-Ella DMA, Bedhiafi T, Raza A, Al-Zaidan L, Mohsen MO, Al-Nesf MAY, Hssain AA, Yassine HM, Bachmann MF, Uddin S, & Dermime S. (2022). Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Annals of medicine, 54(1), 524-540. https://doi.org/10.1080/07853890.2022.2031274
9. Bai Y, Wang Q, Liu M, Bian L, Liu J, Gao F, Mao Q, Wang Z, Wu X, Xu M, & Liang Z. (2022). The next major emergent infectious disease: Reflections on vaccine emergency development strategies. Expert Review of Vaccines, 21(4), 471-481. https://doi.org/10.1080/14760584.2022.2027240
10. Hassine IH. (2022). Covid-19 vaccines and variants of concern: A review. Reviews in Medical Virology, 32(4), e2313. https://doi.org/10.1002/rmv.2313
11. Meo SA, Bukhari IA, Akram J, Meo AS, & Klonoff DC. (2021). COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. European Review for Medical and Pharmacological Sciences, 25(3), 1663-1669. https://doi.org/10.26355/eurrev_202102_24877
12. Rashedi R, Samieefar N, Masoumi N, Mohseni S, & Rezaei N. (2022). COVID-19 vaccines mix-and-match: The concept, the efficacy and the doubts. Journal of Medical Virology, 94(4), 1294-1299. https://doi.org/10.1002/jmv.27463
13. Yadav T, Kumar S, Mishra G, & Saxena SK. (2023). Tracking the COVID-19 vaccines: The global landscape. Human Vaccines & Immunotherapeutics, 19(1), 2191577. https://doi.org/10.1080/21645515.2023.2191577
14. Huang YZ, & Kuan CC. (2022). Vaccination to reduce severe COVID-19 and mortality in COVID-19 patients: A systematic review and meta-analysis. European Review for Medical and Pharmacological Sciences, 26(5), 1770-1776. https://doi.org/10.26355/eurrev_202203_28248
15. Ghazy RM, Ashmawy R, Hamdy NA, Elhadi YAM, Reyad OA, Elmalawany D, Almaghraby A, Shaaban R, & Taha SHN. (2022). Efficacy and effectiveness of SARS-CoV-2 vaccines: A systematic review and meta-analysis. Vaccines, 10(3), 350. https://doi.org/10.3390/vaccines10030350
16. Rahmani K, Shavaleh R, Forouhi M, Disfani HF, Kamandi M, Oskooi RK, Foogerdi M, Soltani M, Rahchamani M, Mohaddespour M, & Dianatinasab M. (2022). The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: A systematic review and meta-analysis. Frontiers in Public Health, 10, 873596. https://doi.org/10.3389/fpubh.2022.873596
17. Liu Y, & Ye Q. (2022). Safety and efficacy of the common vaccines against COVID-19. Vaccines, 10(4), 513. https://doi.org/10.3390/vaccines10040513
18. Oehler RL, & Vega VR. (2022). Worldwide vaccine inequality threatens to unleash the next COVID-19 variant. International Journal of Infectious Diseases, 123, 133-135. https://doi.org/10.1016/j.ijid.2022.08.010
19. Turyasingura N, James WG, & Vermund SH. (2023). COVID-19 vaccine equity in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 117(6), 470-472. https://doi.org/10.1093/trstmh/trac130
20. Tatar M, Shoorekchali J, Faraji M, & Wilson FA. (2021). International COVID-19 vaccine inequality amid the pandemic: Perpetuating a global crisis? Journal of Global Health, 11, 03086. https://doi.org/10.7189/jogh.11.03086
21. De Matteis A, Turkmen Ceylan FB, & Urpis E. (2023). Which vaccination strategy against COVID-19? International Health, 15(2), 150-160. https://doi.org/10.1093/inthealth/ihac023
22. Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, Zhou H, Islam MR, Mamada SS, Kusuma HI, Rabaan AA, Alhumaid S, Mutair AA, Iqhrammullah M, Al-Tawfiq JA, Al Mohaini M, Alsalman AJ, Tuli HS, Chakraborty C, & Harapan H. (2023). Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. Journal of Infection and Public Health, 16(1), 4-14. https://doi.org/10.1016/j.jiph.2022.11.024
23. Bolcato M, Rodriguez D, Feola A, Di Mizio G, Bonsignore A, Ciliberti R, Tettamanti C, Aurilio MT, & Aprile A. (2021). COVID-19 pandemic and equal access to vaccines. Vaccines, 9(6), 538. https://doi.org/10.3390/vaccines9060538
24. Tatar M, Shoorekchali JM, Faraji MR, Seyyedkolaee MA, Pagán JA, & Wilson FA. (2022). COVID-19 vaccine inequality: A global perspective. Journal of Global Health, 12, 03072. https://doi.org/10.7189/jogh.12.03072
25. Nuradeni OHA. (2021). COVID-19 and international security & cooperation. Qalaai Science Journal, 6(1), 67-111. https://doi.org/10.25212/LFU.QZJ.6.1.03
26. Niu B, Dai Z, & Li Q. (2022). Sharing knowledge to an entrant for production investment confronting COVID-19: Incentive alignment and lose-lose dilemma. Risk Analysis: An International Journal, 42(1), 177-205. https://doi.org/10.1111/risa.13839
27. Skak K, Tabriz NS, Nurtazina ZB, & Mutaikhan Z. (2016). Drug-Resistant tuberculosis and modern approaches towards its diagnosis. Research Journal of Pharmaceutical. Biological and Chemical Sciences, 7(5), 3098–3104. https://www.rjpbcs.com/pdf/2016_7(5)/[398].pdf
28. Skak K, Tabriz NS, Nurtazina ZB, & Mutaikhan Z. (2017). Drug-resistant tuberculosis and modern approaches towards its diagnosis. International Journal of Clinical Skills, 11(3), 73–78. https://doi.org/10.4172/Clinical-Skills.1000115
29. Kralinsky K, Pisarchikova M, Dobrovanov AE, & Babela R. (2020). Protocol for the diagnosis, management and treatment of pediatric patients with COVID-19 according to the recommendations of the Slovakian Pediatric Society. Rossiyskiy Vestnik Perinatologii i Pediatrii, 65(5), 93-99. https://doi.org/10.21508/1027-4065-2020-65-5-93-99
30. Shah SS, Kulkarni N, & Mahant S. (2020). Rapid publication, knowledge sharing, and our responsibility during the COVID-19 pandemic. Journal of Hospital Medicine, 15(5), 261. https://doi.org/10.12788/jhm.3441
31. Kim K, & Cho KT. (2021). A review of global collaboration on COVID-19 research during the pandemic in 2020. Sustainability, 13(14), 7618. https://doi.org/10.3390/su13147618
32. Taghizade S, Chattu VK, Jaafaripooyan E, & Kevany S. (2021). COVID-19 pandemic as an excellent opportunity for global health diplomacy. Frontiers in Public Health, 9, 655021. https://doi.org/10.3389/fpubh.2021.655021
33. Kovalchuk VP, Nazarchuk OA, Burkot VM, Fomina NS, Prokopchuk ZM, & Dobrovanov O. (2021). Biofilm forming activity of non-fermenting gram-negative bacteria. Wiadomosci lekarskie (Warsaw, Poland : 1960), 74(2), 252–256. https://doi.org/10.36740/wlek202102114
34. Biyashev KB, Makbuz AZ, & Biyashev BK. (2016). Occurrence of enteroinfectious pathogens in agricultural animals and poultry. Biology and Medicine, 8(2), BM-170-16. https://biolmedonline.com/content/BM-170-16_Occurrence-Of-Enteroinfectious-Pathogens-In-Agricultural-Animals-And-Poultry.pdf
35. Maltsev D. (2022). A comparative study of valaciclovir, valganciclovir, and artesunate efficacy in reactivated HHV-6 and HHV-7 infections associated with chronic fatigue syndrome/myalgic encephalomyelitis. Microbiology and Immunology, 66(4), 193–199. https://doi.org/10.1111/1348-0421.12966
36. Van Lange PAM, & Rand DG. (2022). Human cooperation and the crises of climate change, COVID-19, and misinformation. Annual Review of Psychology, 73, 379-402. https://doi.org/10.1146/annurev-psych-020821-110044
37. Mansouri F, & Sefidgarbaei F. (2021). Risk society and COVID-19. Canadian Journal of Public Health, 112, 36-37. https://doi.org/10.17269/s41997-021-00473-z
38. Roozenbeek J, Schneider CR, Dryhurst S, Kerr J, Freeman ALJ, Recchia G, van der Bles AM, & van der Linden S. (2020). Susceptibility to misinformation about COVID-19 around the world. Royal Society Open Science, 7(10), 201199. https://doi.org/10.1098/rsos.201199
39. Lillicrap D, & Morrissey JH. (2022). Scientific method and the COVID pandemic. Journal of Thrombosis and Haemostasis, 20(3), 547-548. https://doi.org/10.1111/jth.15655
40. Gabarron E, Oyeyemi SO, & Wynn R. (2021). COVID-19-related misinformation on social media: A systematic review. Bulletin of the World Health Organization, 99(6), 455-463A. https://iris.who.int/handle/10665/341745?locale-attribute=en&
41. Barua Z, Barua S, Aktar S, Kabir N, & Li M. (2020). Effects of misinformation on COVID-19 individual responses and recommendations for resilience of disastrous consequences of misinformation. Progress in Disaster Science, 8, 100119-100119. https://doi.org/10.1016/j.pdisas.2020.100119
42. Tabriz N, Nurtazina ZB, Kozhamuratov MT, Skak K, & Mutaikhan Z. (2021). Effects of secondary infections on the multidrug-resistant Tuberculosis: A cohort study. Medical Journal of the Islamic Republic of Iran, 35(1), 1–7. https://doi.org/10.47176/mjiri.35.105
43. Parisi GF, Brindisi G, Indolfi C, Diaferio L, Marchese G, Ghiglioni DG, Zicari AM, & Miraglia del Giudice M. (2020). Upper airway involvement in pediatric COVID-19. Pediatric Allergy and Immunology, 31(S26), 85–88. https://doi.org/10.1111/pai.13356
44. Diaferio L, Parisi GF, Brindisi G, Indolfi C, Marchese G, Ghiglioni DG, Zicari AM, Marseglia GL, & Miraglia Del Giudice M. (2020). Cross-sectional survey on impact of paediatric COVID-19 among Italian paediatricians: Report from the SIAIP rhino-sinusitis and conjunctivitis committee. Italian Journal of Pediatrics, 46(1), 146. https://doi.org/10.1186/s13052-020-00906-4
45. Chen Y, Cheng L, Lian R, Song Z, & Tian J. (2021). COVID-19 vaccine research focusses on safety, efficacy, immunoinformatics, and vaccine production and delivery: A bibliometric analysis based on VOSviewer. BioScience Trends, 15(2), 64-73. https://doi.org/10.5582/bst.2021.01061
46. Bok K, Sitar S, Graham BS, & Mascola JR. (2021). Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity, 54(8), 1636-1651. https://doi.org/10.1016/j.immuni.2021.07.017
47. De la Fuente J, & Contreras M. (2021). Vaccinomics: A future avenue for vaccine development against emerging pathogens. Expert Review of Vaccines, 20(12), 1561-1569. https://doi.org/10.1080/14760584.2021.1987222
48. Ismailov I, Kalmatov R, Abdurakhmanov B, Mirza AM, & Chaurasia JK. (2024). Role of reactive oxygen species in the pathogenesis of bronchial asthma and obstructive pulmonary diseases: Systematic review. Advancements in Life Sciences, 11(2), 286–295. https://doi.org/10.62940/als.v11i2.2380
49. Platt L, Rathod SD, Cinardo P, Guise A, Hosseini P, Annand PJ, Surey J, & Burrows M. (2022). Prevention of COVID-19 among populations experiencing multiple social exclusions. Journal of Epidemiology and Community Health, 76(2), 107-108. https://doi.org/10.1136/jech-2021-216889
50. Byrne EA. (2022). Understanding long Covid: Nosology, social attitudes and stigma. Brain, Behavior, and Immunity, 99, 17-24. https://doi.org/10.1016/j.bbi.2021.09.012
51. Callegari B, & Feder C. (2022). The long-term economic effects of pandemics: toward an evolutionary approach. Industrial and Corporate Change, 31(3), 715-735. https://doi.org/10.1093/icc/dtab064
52. Donthu N, & Gustafsson A. (2020). Effects of COVID-19 on business and research. Journal of Business Research, 117, 284-289. https://doi.org/10.1016/j.jbusres.2020.06.008
53. Mastrogianni M, Kaitelidou D, & Katsoulas T. (2021). The investigation of pandemics and their impact on the world socio-economic map. Health Review, 32(183). https://doi.org/10.54042/hr660hhsma
54. Cylus J, & Karanikolos M. (2021). Financing the COVID-19 response. The European Journal of Public Health, 31(Suppl. 3), ckab164.287. https://doi.org/10.1093/eurpub/ckab164.287
55. Chinnery PF, Pearce JJ, Kinsey AA, Jenkinson JM, Wells G, & Watt FM. (2021). How COVID-19 has changed medical research funding. Interface Focus, 11(6), 20210025. https://doi.org/10.1098/rsfs.2021.0025
56. Shueb S, Gul S, Nisa NT, Shabir T, Ur Rehman S, & Hussain A. (2022). Measuring the funding landscape of COVID-19 research. Library Hi Tech, 40(2), 421-436. https://doi.org/10.1108/lht-04-2021-0136
Published
Issue
Section
License
Copyright (c) 2024 Beata Strzelecka, Ledi Necaj, Katarzyna Wisniewska, Samuel Stroz, Mateusz Bartoszewicz (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.