Hyaluronan in lung, in plasma as pathogenic and prediction factor of acute respiratory distress syndrome: A systematic review

Authors

  • Evgen Dubrovskyi Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine Author https://orcid.org/0009-0009-8482-3234
  • Tetiana Drevytska Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine Author https://orcid.org/0000-0002-3192-4682
  • Victor Dosenko Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine Author https://orcid.org/0000-0002-6919-7724

DOI:

https://doi.org/10.56294/saludcyt2024.578

Keywords:

Hyaluronan, Viral Pathogenicity, Acute Respiratory Distress Syndrome, Inflammatory Injury, Coronavirus

Abstract

This investigation aims to study contemporary literature pertaining to the involvement of hyaluronate in the pathogenesis of diverse medical conditions, encompassing coronavirus-induced pulmonary injury, while also exploring its potential utility as a prognostic indicator for assessing the severity of COVID-19. This study conducted a comprehensive examination of hyaluronic acid’s multifaceted role in physiological processes and disease, with a specific focus on its implications in COVID-induced lung damage. The research provided an in-depth analysis of the intricate mechanisms and fundamental patterns governing these biological phenomena, elucidating essential interactions and pathways. Of particular significance in this investigation was the potential diagnostic utility of hyaluronic acid in assessing the severity of acute respiratory distress syndrome (ARDS), including COVID-19. Through a rigorous examination of hyaluronic acid concentration levels, researchers sought to assess its potential as an early prognostic indicator, thereby providing valuable insights for clinical diagnostics. Furthermore, the study explored the therapeutic prospects related to hyaluronic acid, emphasizing its involvement in various pathological processes. It suggested that targeting hyaluronic acid could represent a promising avenue for drug development, potentially leading to the creation of innovative pharmaceutical agents

References

1. Mostovyi S (2023). Comparative analysis of the glomerular filtration rate effect on the course of COVID-19 in patients with coronary heart disease with and without concomitant coronavirus disease. Int J Med Med Res. 9(1), 15-23. https://doi.org/10.61751/ijmmr.2413-6077.2023.1.15

2. Bakalets O, Dzyha S, Behosh N (2023). Functional diagnostics of the respiratory system in patients with Long COVID. Bull Med Biol Res. 16(2), 60-66. https://doi.org/10.61751/bmbr.2706-6290.2023.2.60

3. Dobrovanov O, Dmytriiev D, Prochotsky A, Vidiscak M, Furkova K (2023). Chronic pain in post-COVID syndrome. Bratisl Med J. 124(2), 97-103. https://doi.org/10.4149/BLL_2023_014

4. Hellman U, Karlsson MG, Engström-Laurent A, Cajander S, Dorofte L, Ahlm C, Laurent C, Blomberg A. (2020). Presence of hyaluronan in lung alveoli in severe Covid-19: An opening for new treatment options? J Bio Chemist. 295(45), 15418-15422. https://doi.org/10.1074/jbc.ac120.015967

5. Ismailov I, Kalmatov R, Abdurakhmanov B, Mirza AM, Chaurasia JK (2024). Role of reactive oxygen species in the pathogenesis of bronchial asthma and obstructive pulmonary diseases: systematic review. Adv Life Sci. 11(2), 286-295. https://doi.org/10.62940/als.v11i2.2380

6. Zhao F, Barber C, Sammani S, Wan L, Miller B, Furenlid L, Li Z, Gotur D, Barrios R, Woolfenden J, Martin D, Liu Z. (2022). Use of radiolabeled hyaluronic acid for preclinical assessment of inflammatory injury and acute respiratory distress syndrome. Nucl Med Bio. 114, 86-98. https://doi.org/10.1016%2Fj.nucmedbio.2022.10.002

7. Topchubaeva ET, Imetova ZB, Turusbekova AK, Abdurahmanov BO, Kalmatov RK (2020). Respiratory tract disorders associated with changes of the mucous membrane in workers often exposed to pathological and toxic factors. J Environ Treat Tech. 8(4), 1581-1585. https://doi.org/10.47277/JETT/1585

8. Belov GV, Sultanmuratov MT, Kalmatov RK, Dzholdubaev YD, Akmatov KT (2005). Response to exercise of surfactant system of the lungs and lipid peroxidation in rats adapted to low and high altitude climate. Vopr Kurortol Fizioter Lech Fiz Kult. 3, 34-35. https://pubmed.ncbi.nlm.nih.gov/16060282/

9. Bongiovanni A, Parisi GF, Scuderi MG, Licari A, Brambilla I, Marseglia GL, Leonardi S (2019). Gastroesophageal reflux and respiratory diseases: does a real link exist? Minerva Pediatr. 71(6), 515-523. https://doi.org/10.23736/S0026-4946.19.05531-2

10. Boell SK, Cecez-Kecmanovic D. (2016). On being ‘systematic’ in literature reviews. In: Formulating Research Methods for Information Systems (pp. 48-78). London: Palgrave Macmillan. https://doi.org/10.1057/jit.2014.26

11. Reeves SR, Barrow KA, Rich LM, White MP, Shubin NJ, Chan CK, Kang I, Ziegler SF, Piliponsky AM, Wight TN, Debley JS. (2020). Respiratory syncytial virus infection of human lung fibroblasts induces a hyaluronan-enriched extracellular matrix that binds mast cells and enhances expression of mast cell proteases. Front Immunol. 10, 3159. https://doi.org/10.3389/fimmu.2019.03159

12. Kovalchuk VP, Nazarchuk OA, Burkot VM, Fomina NS, Prokopchuk ZM, Dobrovanov O (2021). Biofilm forming activity of non-fermenting gram-negative bacteria. Wiad Lek. 74(2), 252-256. https://doi.org/10.36740/wlek202102114

13. Hällgren R, Samuelsson T, Laurnet T, Modig J. (1989). Accumulation of hyaluronan (hyaluronic acid) in the lung in adult respiratory distress syndrome. Am Rev Respir Diseas. 139(3), 682-687. https://doi.org/10.1164/ajrccm/139.3.682

14. Laurent TC, Laurent UBG, Fraser JRE. (1996). The structure and function of hyaluronan: An overview. Immun Cell Bio. 74(2), a1-a7. https://doi.org/10.1038/icb.1996.32

15. Day AJ, Prestwich GD. (2002). Hyaluronan-binding proteins: tying up the giant. J Bio Chemis. 277(7) 4585-4588. https://doi.org/10.1074/jbc.r100036200

16. Csoka AB, Frost G, Stern R. (2001). The six hyaluronidase-like genes in the human and mouse genomes. Matrix Bio. 20(8), 499-508. https://doi.org/10.1016/s0945-053x(01)00172-x

17. Donlan AN, Sutherland TE, Marie C, Preissner S, Bradley BT, Carpenter RM, Sturek JM, Ma JZ, Moreau GB, Donowitz JR, Buck GA, Serrano MG, Burgess SL, Abhyankar MM, Mura C, Bourne PE, Preissner R, Young MK, Lyons GR, Loomba JJ, Ratcliffe SJ, Poulter MD, Mathers AJ, Day AJ, Mann BJ, Allen JE, Petri WA. (2021). IL-13 is a driver of COVID-19 severity. JCI Insigh. 6(15), e150107. https://doi.org/10.1101%2F2020.06.18.20134353

18. Vigetti D, Deleonibus S, Moretto P, Bowen T, Fischer JW, Grandoch M, Oberhuber A, Love D, Hanover J, Cinquetti R, Karousou E, Viola M, D’angelo ML, Hascall V, de Luca G, Passi A. (2014). Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Bio Chemis. 289(42), 28816-28826. https://doi.org/10.1074/jbc.m114.597401

19. Song C, Chai Q, Danielsen C, Hjorth P, Nyengaard JR, Ledet T, Yamaguchi Y, Rasmussen L, Wogensen L. (2005). Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis. Circulat Res. 96(5), 583-591. https://doi.org/10.1161/01.res.0000158963.37132.8b

20. Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ, Ro JY, Jeoung D. (2008). Hyaluronic acid targets CD44 and inhibits FcɛRI signaling involving PKCδ, Rac1, ROS, and MAPK to exert anti-allergic effect. Molecul Immun. 45(9), 2537-2547. https://doi.org/10.1016/j.molimm.2008.01.008

21. Rosser JI, Nagy N, Goel R, Kaber G, Demirdjian S, Saxena J, Bollyky JB, Frymoyer AR, Pacheco-Navarro AE, Burgener EB, Rajadas J, Wang Z, Arbach O, Dunn CE, Kalinowski A, Milla CE, Bollyky PL. (2022). Oral hymecromone decreases hyaluronan in human study participants. J Clinic Invest. 132(9), e157983. https://doi.org/10.1172%2FJCI157983

22. Queisser KA, Mellema RA, Middleton EA, Portier I, Manne BK, Denorme F, Beswick EJ, Rondina MT, Campbell RA, Petrey AC. (2021). COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insigh. 6(17), e147472. https://doi.org/10.1172/jci.insight.147472

23. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo Antinori PS, Corbellino M, Galli M, Catena E, Tosoni A, Gianatti A, Nebuloni M. (2020). Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect Diseas. 20(10), 1135-1140. https://doi.org/10.1016/s1473-3099(20)30434-5

24. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Chen L, Li J, Wang X, Wang F, Liu L, Zhang S, Zhang Z. (2020). The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. https://doi.org/10.1101/2020.02.23.20026690

25. Borrmann M, Brandes F, Kirchner B, Klein M, Billaud JN, Reithmair M, Rehm Schelling G, Pfaffl M, Meidert AS. (2023). Extensive blood transcriptome analysis reveals cellular signaling networks activated by circulating glycocalyx components reflecting vascular injury in COVID-19. Front Immun. 14, 1129766. https://doi.org/10.3389/fimmu.2023.1129766

26. Yang S, Tong Y, Chen L, Yu W. (2022). Human Identical Sequences, hyaluronan, and hymecromone – The new mechanism and management of COVID-19. Molecul Biomed. 3, 15. https://doi.org/10.1186/s43556-022-00077-0

27. Huang JJ, Wang CW, Liu Y, Zhang YY, Yang NB, Yu YC, Jiang Q, Song QF, Qian GQ. (2023). Role of the extracellular matrix in COVID-19. World J Clinic Cases. 11(1), 73. https://doi.org/10.12998/wjcc.v11.i1.73

28. Kratochvil MJ, Kaber G, Demirdjian S, Cai PC, Burgener EB, Nagy N, Barlow GL, Popescu M, Nicolls MR, Ozawa MG, Regula DP, Pacheco-Navarro AE, Yang S, de Jesus Perez VA, Karmouty-Quintana H, Peters AM, Zhao B, Buja ML, Johnson PY, Vernon RB, Bollyky PL. (2022). Biochemical, biophysical, and immunological characterization of respiratory secretions in severe SARS-CoV-2 infections. JCI Insigh. 7(12), e152629. https://doi.org/10.1172/jci.insight.152629

29. Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, Heldin P. (2019). High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMed. 48, 425-441. https://doi.org/10.1016/j.ebiom.2019.09.014

30. Hellman U, Rosendal E, Lehrstrand J, Henriksson J, Björsell T, Hahn M, Österberg B, Dorofte L, Nilsson E, Forsell M, Smed-Sörensen A, Lenman A. (2023). Hyaluronan in COVID-19 morbidity, a bedside-to-bench approach to understand mechanisms and long-term consequences of hyaluronan. https://www.medrxiv.org/content/10.1101/2023.02.10.23285332v2

31. Andonegui-Elguera S, Taniguchi-Ponciano K, Gonzalez-Bonilla C, Torres J, Mayani H, Herrera L, Pena-Martínez E, Silva-Román G, Vela-Patiño S, Ferreira-Hermosillo A, Ramirez-Renteria C, Carvente-Garcia R, Mata-Lozano C, Marrero-Rodríguez D, Mercado M. (2020). Molecular alterations prompted by SARS-CoV-2 infection: induction of hyaluronan, glycosaminoglycan and mucopolysaccharide metabolism. Archiv Med Res. 51(7), 645-653. https://doi.org/10.1016/j.arcmed.2020.06.011

32. Khoor A. (2008). Idiopathic interstitial pneumonias. London: Elsevier. https://mayoclinic.elsevierpure.com/en/publications/idiopathic-interstitial-pneumonias

33. Queisser KA, Mellema RA, Petrey AC. (2021). Hyaluronan and its receptors as regulatory molecules of the endothelial interface. J Histochem Cytochem. 69(1), 25-34. https://doi.org/10.1369/0022155420954296

34. Johnson GB, Brunn GJ, Platt JL. (2004). Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immun. 172(1), 20-24. https://doi.org/10.4049/jimmunol.172.1.20

35. Ding M, Zhang Q, Li Q, Wu T, Huang Y. (2020). Correlation analysis of the severity and clinical prognosis of 32 cases of patients with COVID-19. Respir Med. 167, 105981. https://doi.org/10.1016%2Fj.rmed.2020.105981

36. Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez H, Nagy N, Karmouty-Quintana H, Bollyky PL. (2023). Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Bio. 116, 49-66. https://doi.org/10.1016%2Fj.matbio.2023.02.001

37. Rodén L, Campbell P, Fraser R, Laurent T, Pertoft H, Thompson J. (2007). Enzymic pathways of hyaluronan catabolism. In: The Biology of Hyaluronan: Ciba Foundation Symposium 143. https://doi.org/10.1002/9780470513774.ch5

38. Baranova NS, Nilebäck E, Haller FM, Briggs DC, Svedhem S, Day AJ, Richter RP. (2011). The inflammation-associated protein TSG-6 cross-links hyaluronan via hyaluronan-induced TSG-6 oligomers. J Bio Chemis. 286(29), 25675-25686. https://doi.org/10.1074/jbc.m111.247395

39. Collum SD, Chen NY, Hernandez AM, Hanmandlu A, Sweeney H, Mertens T, Weng T, Luo F, Molino J, Davies J, Horan IP. (2017). Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. British J Pharmac. 174(19), 3284-3301. https://doi.org/10.1111%2Fbph.13947

40. Albtoush N, Petrey AC. (2022). The role of hyaluronan synthesis and degradation in the critical respiratory illness COVID-19. Am J Phys-Cell Physiol. 322(6), 1037-1046. https://doi.org/10.1152/ajpcell.00071.2022

41. McKallip RJ, Ban H, Uchakina ON. (2015). Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation. Inflam. 38, 1250-1259. https://doi.org/10.1007/s10753-014-0092-y

Downloads

Published

2024-09-17

Issue

Section

Systematic reviews or meta-analyses

How to Cite

1.
Dubrovskyi E, Drevytska T, Dosenko V. Hyaluronan in lung, in plasma as pathogenic and prediction factor of acute respiratory distress syndrome: A systematic review. Salud, Ciencia y Tecnología [Internet]. 2024 Sep. 17 [cited 2025 May 24];4:.578. Available from: https://sct.ageditor.ar/index.php/sct/article/view/578