Impact of preprocessing on the results of thyroid function evaluations

Authors

DOI:

https://doi.org/10.56294/saludcyt2024.530

Keywords:

Diagnostic accuracy, Laboratory materials, Sample extraction, Diet and hormones

Abstract

Accuracy in thyroid hormone measurements has been a crucial step in the diagnosis and management of thyroid disorders. However, preanalytical factors such as choice of laboratory materials, diet, and sample preparation conditions have been found to significantly affect test results. Therefore, the present study has focused on analyzing the influence of these preanalytical factors on thyroid hormone tests, as well as the impact on diagnostic accuracy. In addition, establishing guidelines to optimize the quality of clinical results and improve the management of thyroid diseases. To achieve these purposes, aspects such as the selection of collection tubes, the quality of the reagents and the impact of the diet on the results have been evaluated. The findings indicated that tubes with separating gel and anticoagulants negatively affect TSH and FT4 measurements. While food intake before extraction significantly alters TSH and FT4 levels. Although equilibrium dialysis is accurate for measuring FT4, it has been influenced by adsorption on surfaces and storage conditions. In conclusion, observations have highlighted the need to standardize preanalytical procedures and use appropriate materials to improve the accuracy of hormonal testing. In conjunction with the implementation of guidelines based on practices and scientific evidence that optimize the quality of clinical results and improve the management of thyroid diseases

References

1. Yildiz Z, Dağdelen LK. Reference intervals for thyroid disorders calculated by indirect method and comparison with reference change values. Biochemia Medica. 2023;33(1):49-59.

2. Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radical Biology and Medicine. 2022;193(Part 1):59-79.

3. Płaczkowska S, Terpińska M, Piwowar A. Establishing laboratory-specific reference intervals for TSH and fT4 by use of the indirect Hoffman method. Plos one. 2022;17(1):e0261715.

4. Andersen S, Karmisholt J, Bruun NH, Riis J, Noahsen P, Westergaard L, et al. Interpretation of TSH and T4 for diagnosing minor alterations in thyroid function: a comparative analysis of two separate longitudinal cohorts. Thyroid research. 2022;15(1):19.

5. Ribera A, Zhang L, Ribeiro C, Vazquez N, Thonkulpitak J, Botelho JC, et al. Practical considerations for accurate determination of free thyroxine by equilibrium dialysis. Journal of Mass Spectrometry and Advances in the Clinical lab. 2023;29(August ):9-15.

6. Pelanti J, Lamberg T, Salopuro T, Pussinen C, Suvisaari J, Joutsi-Korhonen L, et al. Changing immunochemistry platforms: thyroid function test comparison and reference intervals based on clinical needs. The journal of applied laboratory medicine. 2022;7(6):1438-44.

7. Hedayati M, Razavi SA, Boroomand S, Kheradmand Kia S. The impact of pre‐analytical variations on biochemical analytes stability: A systematic review. Journal of Clinical Laboratory Analysis. 2020;34(12):e23551.

8. Ittermann T, Richter A, Junge M, Nauck M, Petersmann A, Jürgens C, et al. Variability of thyroid measurements from ultrasound and laboratory in a repeated measurements study. European thyroid journal. 2021;10(2):140-9.

9. Mrazek C, Lippi G, Keppel MH, Felder TK, Oberkofler H, Haschke-Becher E, et al. Errors within the total laboratory testing process, from test selection to medical decision-making–A review of causes, consequences, surveillance and solutions. Biochemia medica. 2020;30(2):215-33.

10. Alvarez-Payares JC, Bello-Simanca JD, De La Peña-Arrieta EDJ, Agamez-Gomez JE, Garcia-Rueda JE, Rodriguez-Arrieta A, et al. Common pitfalls in the interpretation of endocrine tests. Frontiers in Endocrinology. 2021;12(September ):1-11.

11. Ghazal K, Brabant S, Prie D, Piketty M-L. Hormone immunoassay interference: a 2021 update. Annals of laboratory medicine. 2022;42(1):3-23.

12. Caruso B, Bovo C, Guidi GC. Causes of preanalytical interferences on laboratory immunoassays–a critical review. Ejifcc. 2020;31(1):70.

13. Tramullas J. Temas y métodos de investigación en Ciencia de la Información, 2000-2019. Revisión bibliográfica. El profesional de la información. 2020;29(4):2-6.

14. Granikov V, Hong QN, Crist E, Pluye P. Mixed methods research in library and information science: A methodological review. Library & Information Science Research. 2020;42(1):3-6.

15. Zhang C, Tian L, Chu H. Usage frequency and application variety of research methods in library and information science: Continuous investigation from 1991 to 2021. Information Processing and Management. 2023;60(6):4-8.

16. Reyes Domínguez Y, Moró Vela RÁ, Ramírez Núñez E, David Cardona L. Cáncer de tiroides en el Hospital General Docente “Dr. Agostinho Neto” de Guantánamo. Rev Inf Cient [Internet]. 2018;97(2). Disponible en: https://revinfcientifica.sld.cu/index.php/ric/article/view/1840

17. Roque Hernández RV, Luna Flores P, Juárez Ibarra CM. Nomofobia y sus desafíos: análisis de su importancia a través de las publicaciones científicas. Dilemas contemp: educ política valores [Internet]. 2023 [cited 2024 Sep 14]; Available from: https://dilemascontemporaneoseducacionpoliticayvalores.com/index.php/dilemas/article/view/3734.

Downloads

Published

2024-12-04

How to Cite

1.
Guato Canchinia DE, Maldonado Mariño EV, Morales Pilataxi ML, Ramos Velastegui AJ. Impact of preprocessing on the results of thyroid function evaluations. Salud, Ciencia y Tecnología [Internet]. 2024 Dec. 4 [cited 2025 Jun. 22];4:.530. Available from: https://sct.ageditor.ar/index.php/sct/article/view/530