The most common teratogens as factors of mutability: A literature review

Authors

DOI:

https://doi.org/10.56294/saludcyt20241098

Keywords:

Congenital Defects, Teratogens, Congenital Malformations, Epidemiology, Prevention, Mutation

Abstract

Background and aim: The teratogenic agents during the embryonic period can result in disorders in organ differentiation. Concerns regarding medication use during pregnancy heightened after the thalidomide case in the 1960s, underscoring the need for a balance between caution and effective treatment, given the lack of clear information on risks. The aim of the research was to understand teratogens as factors that increase mutability and highlight the relevance of preventive strategies to ensure fetal and maternal health. Methods: Literature review using the PubMed database, Scopus and Web of Science was conducted. Forty-four articles, documents, clinical trials, and systematic reviews published in English were included. Teratogens and their effects, as well as preventive strategies for teratogenic congenital defects, were explored. Results: Risks associated with specific substances were examined, highlighting their effects on the fetus and providing epidemiological data. Preventive measures such as vaccination, folic acid supplementation, and control of metabolic diseases were addressed. Conclutions: During pregnancy, it is crucial to avoid exposure to chemicals, drugs, and medications that may harm the fetus. Caution should be exercised with the use of medications, and alcohol, tobacco, and illicit drugs should be avoided. Preventive strategies such as vaccination and folic acid supplementation reduce the risk of congenital malformations and promote a healthy pregnancy

References

1. Cornwall-Scoones J, Zernicka-Goetz M. Unifying synthetic embryology. Dev Biol. 2021;474:1–4. https://doi.org/10.1016/j.ydbio.2021.03.007

2. Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–920. https://doi.org/10.1016/j.fertnstert.2020.09.157

3. Bonasia S, Smajda S, Ciccio G, Robert T. Stapedial Artery: From Embryology to Different Possible Adult Configurations. AJNR Am J Neuroradiol. 2020;41(10):1768–1776. https://doi.org/10.3174/ajnr.A6738

4. Mantri SS, Raju B, Jumah F, Rallo MS, Nagaraj A, Khandelwal P, et al. Aortic arch anomalies, embryology and their relevance in neuro-interventional surgery and stroke: A review. Interv Neuroradiol. 2022;28(4):489–498. https://doi.org/10.1177/15910199211039924

5. Simopoulou M, Sfakianoudis K, Maziotis E, Rapani A, Giannelou P, Pantou A, et al. Assessing Clinical Embryology Research: A Global Bibliometric Analysis. Medicina (Kaunas). 2020;56(5):210. https://doi.org/10.3390/medicina56050210

6. Aguilar-Alaniz E, Reyes-Pavón R, Van-der-Ende J, Félix-Orta FJ, Mora ID, Aroca-Peinado Á, et al. Quality of life of children and adults following cardiac surgery for congenital heart disease: A Mexican cohort. Arch Cardiol Mex. 2021;91(1):34–41. https://doi.org/10.24875/ACM.20000107

7. Draghici CC, Miulescu RG, Petca RC, Petca A, Dumitrașcu MC, Șandru F. Teratogenic effect of isotretinoin in both fertile females and males (Review). Exp Ther Med. 2021;21(5):534. https://doi.org/10.3892/etm.2021.9966

8. Ahn D, Kim J, Kang J, Kim YH, Kim K. Congenital anomalies and maternal age: A systematic review and meta-analysis of observational studies. Acta Obstet Gynecol Scand. 2022;101(5):484–498. https://doi.org/10.1111/aogs.14339

9. Hou J, Sha Z, Hartley W, Tan W, Wang M, Xiong J, et al. Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel. Environ Pollut. 2018;238:524–531. https://doi.org/10.1016/j.envpol.2018.03.047

10. Kühne BA, Teixidó E, Ettcheto M, Puig T, Planas M, Feliu L, et al. Application of the adverse outcome pathway to identify molecular changes in prenatal brain programming induced by IUGR: Discoveries after EGCG exposure. Food Chem Toxicol. 2022;170:113506. https://doi.org/10.1016/j.fct.2022.113506

11. Asatsuma-Okumura T, Ito T, Handa H. Molecular Mechanisms of the Teratogenic Effects of Thalidomide. Pharmaceuticals (Basel). 2020;13(5):95. https://doi.org/10.3390/ph13050095

12. Abadie RB, Keller CL, Jones NT, Mayeux EL, Klapper RJ, Anderson L, et al. Review of Teratogenic Effects of Leflunomide, Accutane, Thalidomide, Warfarin, Tetracycline, and Angiotensin-Converting Enzyme Inhibitors. Cureus. 2023;15(12):e50465. https://doi.org/10.7759/cureus.50465

13. Sehnal L, Smutná M, Bláhová L, Babica P, Šplíchalová P, Hilscherová K. The Origin of Teratogenic Retinoids in Cyanobacteria. Toxins (Basel). 2022;14(9):636. https://doi.org/10.3390/toxins14090636

14. García-Álvarez JM, Escribano-Sánchez G, Osuna E, Molina-Rodríguez A, Díaz-Agea JL, García-Sánchez A. Occupational Exposure to Inhalational Anesthetics and Teratogenic Effects: A Systematic Review. Healthcare (Basel). 2023;11(6):883. https://doi.org/10.3390/healthcare11060883

15. Gao S, Wang S, Fan R, Hu J. Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomed Pharmacother. 2020;127:110114. https://doi.org/10.1016/j.biopha.2020.110114

16. Gilbert RK, Petersen LR, Honein MA, Moore CA, Rasmussen SA. Zika virus as a cause of birth defects: Were the teratogenic effects of Zika virus missed for decades? Birth Defects Res. 2023;115(3):265–274. https://doi.org/10.1002/bdr2.2134

17. Tari RM, Diallo A, Kouame E, Assogba P, Badjabaissi E, Povi LE, et al. Assessment of the Teratogenic Effect of Sulfadoxine-Pyrimethamine on the Chicken Embryo. J Toxicol. 2022;2022:2995492. https://doi.org/10.1155/2022/2995492

18. Animaw Z, Asres K, Tadesse S, Basha H, Taye S, Abebe A, et al. Teratogenic Evaluation of 80% Ethanol Extract of Embelia schimperi Vatke Fruits on Rat Embryo and Fetuses. J Toxicol. 2022;2022:4310521. https://doi.org/10.1155/2022/4310521

19. Michaud PA, Diezi M, Guihard L, Jacot-Guillarmod M, Kleist P, Sprumont D, et al. Including adolescents of childbearing potential in clinical trials with possible exposure to teratogenic medication: a challenge for paediatricians and researchers. Swiss Med Wkly. 2020;150:w20333. https://doi.org/10.4414/smw.2020.20333

20. Chandramouli S, Alvarez C, Englund TR, Silverstein RG, Sheikh SZ. Teratogenic medication use associated with favourable odds of contraception counselling in a cohort of women with systemic lupus erythematosus at a large tertiary academic medical centre. Lupus Sci Med. 2022;9(1):e000823. https://doi.org/10.1136/lupus-2022-000823

21. Winterstein AG, Wang Y, Smolinski NE, Thai TN, Ewig C, Rasmussen SA. Prenatal Care Initiation and Exposure to Teratogenic Medications. JAMA Netw Open. 2024;7(2):e2354298. https://doi.org/10.1001/jamanetworkopen.2023.54298

22. Metruccio F, Battistoni M, Di Renzo F, Bacchetta R, Santo N, Menegola E. Teratogenic and neuro-behavioural toxic effects of bisphenol A (BPA) and B (BPB) on Xenopus laevis development. Reprod Toxicol. 2024;123:108496. https://doi.org/10.1016/j.reprotox.2023.108496

23. Sarayani A, Albogami Y, Thai TN, Smolinski NE, Patel P, Wang Y, et al. Prenatal exposure to teratogenic medications in the era of Risk Evaluation and Mitigation Strategies. Am J Obstet Gynecol. 2022;227(2):263.e1–263.e38. https://doi.org/10.1016/j.ajog.2022.01.004

24. Abebe M, Asres K, Bekuretsion Y, Woldkidan S, Debebe E, Seyoum G. Teratogenic Effect of High Dose of Syzygium guineense (Myrtaceae) Leaves on Wistar Albino Rat Embryos and Fetuses. Evid Based Complement Alternat Med. 2021;2021:6677395. https://doi.org/10.1155/2021/6677395

25. Sa S, Seol Y, Lee AW, Heo Y, Kim HJ, Park CJ. Teratogenicity of D-allulose. Toxicol Rep. 2022;9:821–824. https://doi.org/10.1016/j.toxrep.2022.03.028

26. Liu M, Lu X, Zhang J, Zhao X, Zhang W, Lin X. Teratogenic jervine increases the activity of doxorubicin in MCF-7/ADR cells by inhibiting ABCB1. Biomed Pharmacother. 2019;117:109059. https://doi.org/10.1016/j.biopha.2019.109059

27. Vieira R, Venâncio C, Félix L. Teratogenic, Oxidative Stress and Behavioural Outcomes of Three Fungicides of Natural Origin (Equisetum arvense, Mimosa tenuiflora, Thymol) on Zebrafish (Danio rerio). Toxics. 2021;9(1):8. https://doi.org/10.3390/toxics9010008

28. Bilz NC, Willscher E, Binder H, Böhnke J, Stanifer ML, Hübner D, et al. Teratogenic Rubella Virus Alters the Endodermal Differentiation Capacity of Human Induced Pluripotent Stem Cells. Cells. 2019;8(8):870. https://doi.org/10.3390/cells8080870

29. Kim A, Lee SY, Chung SK. Caffeic acid selectively eliminates teratogenic human-induced pluripotent stem cells via apoptotic cell death. Phytomedicine. 2022;102:154144. https://doi.org/10.1016/j.phymed.2022.154144

30. Hirose Y, Kitazono T, Sezaki M, Abe M, Sakimura K, Funato H, et al. Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway. Proc Natl Acad Sci U S A. 2020;117(37):23106–23112. https://doi.org/10.1073/pnas.1917701117

31. Sambu S, Hemaram U, Murugan R, Alsofi AA. Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review. Biomed Res Int. 2022;2022:6829409. https://doi.org/10.1155/2022/6829409

32. Kaleelullah RA, Garugula N. Teratogenic Genesis in Fetal Malformations. Cureus. 2021;13(2):e13149. https://doi.org/10.7759/cureus.13149

33. Gilbert-Barness E. Teratogenic causes of malformations. Ann Clin Lab Sci. 2010 [acceso: 07/02/2024];40(2):99–114. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20421621/

34. Gagnon A, GENETICS COMMITTEE. Evaluation of prenatally diagnosed structural congenital anomalies. J Obstet Gynaecol Can. 2009;31(9):875–881. https://doi.org/10.1016/S1701-2163(16)34307-9

35. Christian MS, Brent RL. Teratogen update: evaluation of the reproductive and developmental risks of caffeine. Teratology. 2001;64(1):51–78. https://doi.org/10.1002/tera.1047

36. Brent RL. Environmental causes of human congenital malformations: the pediatrician's role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors. Pediatrics. 2004 [acceso: 04/02/2024];113(4 Suppl):957–968. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15060188/

37. Beckman DA, Mullin JJ, Assadi FK. Developmental toxicity of cysteamine in the rat: effects on embryo-fetal development. Teratology. 1998;58(3-4):96–102. https://doi.org/10.1002/(SICI)1096-9926(199809/10)58:3/4<96::AID-TERA5>3.0.CO;2-7

38. Opitz JM. Entwicklungsstörungen des Menschen [Developmental abnormalities in humans]. Monatsschr Kinderheilkd. 1991 [acceso: 01/02/2024];139(5):259–272. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1870596/

39. Gagnon A, GENETICS COMMITTEE. Evaluation of prenatally diagnosed structural congenital anomalies. J Obstet Gynaecol Can. 2009;31(9):875–881. https://doi.org/10.1016/S1701-2163(16)34307-9

40. Leviton A. Caffeine consumption and the risk of reproductive hazards. J Reprod Med. 1988 [acceso: 02/02/2024];33(2):175–178. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3280787/

41. Nehlig A, Debry G. Effets du café et de la caféine sur la fertilité, la reproduction, la lactation et le développement. Revue des données humaines et animales [Effects of coffee and caffeine on fertility, reproduction, lactation, and development. Review of human and animal data]. J Gynecol Obstet Biol Reprod (Paris). 1994 [acceso: 10/02/2024];23(3):241–256. Disponible en: https://pubmed.ncbi.nlm.nih.gov/8051344/

42. Nehlig A, Debry G. Consequences on the newborn of chronic maternal consumption of coffee during gestation and lactation: a review. J Am Coll Nutr. 1994;13(1):6–21. https://doi.org/10.1080/07315724.1994.10718366

43. Endler M, Li R, Gemzell Danielsson K. Effect of levonorgestrel emergency contraception on implantation and fertility: A review. Contraception. 2022;109:8–18. https://doi.org/10.1016/j.contraception.2022.01.006

44. Bastos Maia S, Rolland Souza AS, Costa Caminha MF, Lins da Silva S, Callou Cruz RSBLS, Carvalho Dos Santos C, et al. Vitamin A and Pregnancy: A Narrative Review. Nutrients. 2019;11(3):681. https://doi.org/10.3390/nu11030681

Downloads

Published

2024-06-30

How to Cite

1.
Paredes-Páliz K, Armendáriz-Ramos J, Urbina Salazar A, Inca Torres AR. The most common teratogens as factors of mutability: A literature review. Salud, Ciencia y Tecnología [Internet]. 2024 Jun. 30 [cited 2024 Sep. 13];4:1098. Available from: https://sct.ageditor.ar/index.php/sct/article/view/522