Antimicrobial susceptibility in bacterial isolates from water and agricultural products of the Chanchán river, Chimborazo Province, Ecuador

Authors

  • Ana Carolina González Romero Universidad Nacional de Chimborazo. Facultad de Ciencias de la Salud. Riobamba, Ecuador Author
  • Morella Lucia Guillén Ferraro Universidad Nacional de Chimborazo. Facultad de Ciencias de la Salud. Riobamba, Ecuador Author
  • María del Carmen Cordovéz Martínez Universidad Nacional de Chimborazo. Facultad de Ciencias de la Salud. Riobamba, Ecuador Author
  • Felix Falconí Ontaneda Universidad Nacional de Chimborazo. Facultad de Ciencias de la Salud. Riobamba, Ecuador Author

DOI:

https://doi.org/10.56294/saludcyt20241318

Keywords:

Multidrug-Resistant Bacteria, Public Health, Irrigation Water, Agricultural Products, Antimicrobial Resistance

Abstract

Introduction: river contamination with pathogenic and multidrug-resistant microorganisms is a public health issue due to its impact on health and its potential to transmit infectious diseases. Objective: To determine the presence of multidrug-resistant bacteria in irrigation water samples and agricultural products from the Chachán River.

Method: a descriptive, non-experimental study with a quantitative and cross-sectional approach was conducted. Water samples were collected from six different points, and pH and temperature were measured. Additionally, 13 agricultural product samples from the same points were analyzed. The identification and antimicrobial susceptibility testing of bacteria were performed using the VITEK2 system and amplification and sequencing of the 16S rRNA gene.

Results: a total of 17 bacterial strains were isolated from the water samples, 16 of which (94 %) belonged to the order Enterobacterales, including Proteus mirabilis, Proteus vulgaris, Morganella morganii, and Citrobacter diversus. From the agricultural products, 24 bacteria were isolated, including species of Klebsiella, Stenotrophomonas maltophilia, and Enterococcus faecalis. Antimicrobial resistance was observed in various strains, notably P. mirabilis, C. diversus, and P. vulgaris with multiple resistances. Resistance was also identified in pathogenic strains such as Yersinia enterocolitica, Plesiomonas shigelloides, and Aeromonas hydrophila.

Conclusions: the Chachan River and the agricultural products irrigated with its waters contain multidrug-resistant bacteria, posing a significant risk to public health. It is crucial to implement control and monitoring measures to reduce the spread of these pathogens and ensure food safety

References

1. Zhu X, Wang L, Zhang X, He M, Wang D, Ren Y, Pan H. Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river. Ecol Indic. 2022;136:108613. https://doi.org/10.1016/j.ecolind.2022.108613

2. Singh G, Vajpayee P, Ram S, Shanker R. Environmental reservoirs for enterotoxigenic Escherichia coli in south Asian Gangetic riverine system. Environ Sci Technol. 2010;44:6475-80. https://doi.org/10.1021/es1004208

3. Calero-Cáceres W, Muniesa M. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res. 2016;95:11-18. https://doi.org/10.1016/j.watres.2016.03.006.

4. Grenni P. Antimicrobial resistance in rivers: a review of the genes detected and new challenges. Environ Toxicol Chem. 2022;41(3):687-714. https://doi.org/10.1002/etc.5289

5. Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ Res. 2022;212:113267. https://doi.org/10.1016/j.envres.2022.113267

6.Hanna N, Tamhankar AJ, Lundborg CS. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment. Lancet Planet Health. 2023;7(1) e45–e54. https://doi.org/10.1016/S2542-5196(22)00254-6

7. Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. Environ Pollut. 2023;122643. https://doi.org/10.1016/j.envpol.2023.122643

8. Achak M, Alaoui Bakri S, Chhiti Y, M’hamdi Alaoui FE, Barka N, Boumy W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: a review on detection, survival and disinfection technologies. Sci Total Environ. 2021;761:143192. https://doi.org/10.1016/j.scitotenv.2020.143192

9. Yuan T, Pia Y. Hospital wastewater as hotspots for pathogenic microorganisms spread into aquatic environment: a review. Front Environ Sci. 2023;10:1734. https://doi.org/10.3389/fenvs.2022.1091734

10. Guo J, Li J, Chen H, et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017;123:468-78. https://doi.org/10.1016/j.watres.2017.07.002

11. Rodríguez EA, Jiménez-Quiceno JN. Resistencia bacteriana a antibióticos en ambientes acuáticos: origen e implicaciones para la salud pública. Rev Fac Nac Salud Pública. 2023;41(3). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-386X2023000300003&lng=en.

12. Ju F, Li B, Ma L, Wang Y, Huang D, Zhang T. Antibiotic resistance genes and human bacterial pathogens: co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res. 2016;91:1-10. https://doi.org/10.1016/j.watres.2015.11.071

13. Ma L, Li AD, Yin XL, Zhang T. The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol. 2017;51:5721-5728. https://doi.org/10.1021/acs.est.6b05887

14. Pino EA. Río Chanchan. [Internet]. 2016 [citado 14 de mayo de 2019]. Disponible en: https://aplicaciones.senagua.gob.ec/reslotaip2017/rendcuent/DH%20GUAYAS/FASE%201/RESPALDOS/Soporte%20DRYD/Proyectos%20Riego%20y%20Drenaje/9.%20Estudios%20R%C3%ADo%20Chanchan.pdf.

15. CAMAREN.Org. Contaminación de ríos en Chimborazo. [Internet]. 2012 [citado 21 de mayo de 2019]. Disponible en: https://www.printfriendly.com/p/g/mBZ9Pf.

16.-Andueza F, González M, Ibáza D, Vásquez P, Viteri F, Villacís L, Araque J, Escobar-Arrieta S, González-Romero AC, Medina-Ramírez G, Álvarez E. Diversity and profiles of resistance to antibiotic in species of the genus Aeromonas isolated from the aquatic ecosystems of Ecuador. An Acad Farm. 2022;88(4):713-720. https://analesranf.com/articulo/8804_02/.

17. González-Romero AC, Cazares-Silva MR, Cordovez-Martínez MC, RamosCampi YC, Guillén-Ferraro ML. Bacterias aisladas en productos agrícolas provenientes de la cuenca del río Guano. Kasmera. 2022; 50: e5037965. https://doi.org/10.56903/kasmera.5037965

18. González-Romero AC, Guamán-Chabla MG, Cordovez-Martínez M del C, Martínez-Duran EE. Perfiles de susceptibilidad antimicrobiana en bacterias aisladas en cultivos agrícolas de la cuenca del río Chambo. Perfiles. 2022 ;(27):39-48. https://perfiles.espoch.edu.ec/index.php/perfiles/article/view/148.

19. González Romero AC, Tipán Pillajo IK, Cordovez Martínez M del C, Martínez Durán EE. Perfil de susceptibilidad antimicrobiana de bacterias de relevancia clínica aisladas de un río de la zona agropecuaria de Los Andes ecuatorianos. Anatomía Digital. 2023;6(4.3):198-213. https://doi.org/10.33262/anatomiadigital.v6i4.3.2801.

20. Guillén-Ferraro ML, Cordovéz-Martínez MC, González-Romero AC, Medina-Ramírez GE, Mur Caicedo L, Marcillo-Valencia KG. Bacterias multirresistentes en aguas de riego del río Chibunga, Chimborazo, Ecuador. FIGEMPA: Investigación y Desarrollo. 2024;17(1):16-25. https://doi.org/10.29166/revfig.v17i1.5793.

21. CLSI. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute. Wayne, PA; 2022. 32 edition. USA.

22. Hesham A, Alrumman SA, Al-Amari JA. 16S rDNA phylogenetic and RAPD–PCR analyses of petroleum polycyclic aromatic hydrocarbons-degrading bacteria enriched from oil-polluted soils. Arab J Sci Eng. 2016;41:2095–2106. https://doi.org/10.1007/s13369-015-1843-2.

23. Shao K, Yao X, Wu Z, et al. The bacterial community composition and its environmental drivers in the rivers around eutrophic Chaohu Lake, China. BMC Microbiol. 2021;21(1):179. https://doi.org/10.1186/s12866-021-02252-9

24. Ríos-Tobón S, Agudelo-Cadavid RM, Gutiérrez-Builes LA. Patógenos e indicadores microbiológicos de calidad del agua para consumo humano. Rev Fac Nac Salud Pública. 2017;35(2):236-47. https://revistas.udea.edu.co/index.php/fnsp/article/view/26353.

25. Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Incidence and antimicrobial susceptibility fingerprints of Plesiomonas shigelloides isolates in water samples collected from some freshwater resources in Southwest Nigeria. Sci Total Environ. 2019;665:632-640. https://doi.org/10.1016/j.scitotenv.2019.02.062

26. Elnaiem A, Mohamed-Ahmed O, Zumla A, Mecaskey J, Charron N, Abakar MF, Dar O. Global and regional governance of One Health and implications for global health security. Lancet. 2023;401(10377):688-704. https://doi.org/10.1016/S0140-6736(22)01597-5

27. Rodríguez EA, Jiménez-Quiceno JN. Resistencia bacteriana a antibióticos en ambientes acuáticos: origen e implicaciones para la salud pública. Rev Fac Nac Salud Pública. 2023;41(3): e03. https://doi.org/10.17533/udea.rfnsp.e351453.

28. Gogoi A, Mazumder P, Tyagi VK, Chaminda GT, An AK, Kumar M. Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Dev. 2018;6:169-180. https://doi.org/10.1016/j.gsd.2017.12.009

30. Alipour M, Hajiesmaili R, Talebjannat M, Yahyapour Y. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. Scientific World Journal. 2014;(2014):287458. https://doi.org/10.1155/2014/287458

31. Mehanni MM, Gadow SI, Alshammari FA, Modafer Y, Ghanem KZ, El-Tahtawi NF, El-Homosy RF, Hesham AE-L. Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Front Microbiol. 2023;14:1141383. https://doi.org/10.3389/fmicb.2023.1141383

Published

2024-08-07

How to Cite

1.
González Romero AC, Guillén Ferraro ML, Cordovéz Martínez M del C, Falconí Ontaneda FF. Antimicrobial susceptibility in bacterial isolates from water and agricultural products of the Chanchán river, Chimborazo Province, Ecuador. Salud, Ciencia y Tecnología [Internet]. 2024 Aug. 7 [cited 2024 Dec. 10];4:1318. Available from: https://sct.ageditor.ar/index.php/sct/article/view/509