Pseudomonas aeruginosa: A Persistent Pathogen and Current Approaches to Treatment- Microbiology

Authors

  • Nitish Kumar Jaipur National University, School of Life and Basic Sciences, Jaipur, India Author https://orcid.org/0009-0000-3812-7304
  • Vasundhara Teerthanker Mahaveer University, Department of Microbiology, Moradabad, Uttar Pradesh, India Author
  • Sandeep Kumar Chavan Department of Genetics, School of Sciences, JAIN (Deemed-to-be University), Bangalore, India Author https://orcid.org/0000-0003-0118-1221

DOI:

https://doi.org/10.56294/saludcyt2023404

Keywords:

Pseudomonas Aeruginosa (P. Aeruginosa), Virulence Mechanisms, Nosocomial, Colistin, Cystic Fibrosis (CF)

Abstract

Pseudomonas aeruginosa (P. aeruginosa) represents an important bacterial pathogen, mainly because it may infect immunocompromised hosts, hospital patients, and people with cystic fibrosis (CF). Antimicrobial resistance has risen due to monitoring nosocomial P. aeruginosa infections, with tendencies toward model drug and carbapenem resistance. Some of the mechanisms of antimicrobial resistance include the downregulation of outer membrane porins, -lactamases, and multidrug efflux pumps. Toxins that be secreted and can build BioFlim (BF) are examples of virulence mechanisms. Effective therapy of infection caused by P. aeruginosa requires early delivery of the appropriate antibiotic medications, source control measures, and, where possible, prevention. Antibacterial de-escalation is supposed to be considered within patients by a positive clinical response, particularly as antibacterial susceptibilities were identified. Less common antibacterials, including Colistin, may be needed to treat multidrug-resistant P. aeruginosa, although additional anti-pseudomonal antibacterials should become accessible soon

References

1. Hu Y, Zhu K, Jin D, Shen W, Liu C, Zhou H, Zhang R. Evaluation of IR Biotyper for carbapenem-resistant Pseudomonas aeruginosa typing and its application potential for investigating nosocomial infection. Front Microbiol. 2023;14.

2. Ng QX, Ong NY, Lee DYX, Yau CE, Lim YL, Kwa ALH, Tan BH. Trends in Pseudomonas aeruginosa (P. aeruginosa) Bacteremia during the COVID-19 Pandemic: A Systematic Review. Antibiotics. 2023;12(2):409.

3. MubarakAli D, Arunachalam K, Lakshmanan M, Badar B, Kim JW, Lee SY. Unveiling the Anti-Biofilm Property of Hydroxyapatite on Pseudomonas aeruginosa: Synthesis and Strategy. Pharmaceutics. 2023;15(2):463.

4. Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells. 2023;12(1):199.

5. Mendes OR. The challenge of pulmonary Pseudomonas aeruginosa infection: How to bridge research and clinical pathology. In: Viral, Parasitic, Bacterial, and Fungal Infections. Academic Press; 2023. p. 591-608.

6. Chen Z. Mechanisms and Clinical Relevance of Pseudomonas aeruginosa Heteroresistance. Surg Infect. 2023.

7. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24(5):327-337.

8. May TB, Shinabarger D, Maharaj ROMILA, Kato J, Chu L, DeVault JD, Roychoudhury SIDDHARTHA, Zielinski NA, Berry A, Rothmel RK. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev. 1991;4(2):191-206.

9. Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in developing multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382-3386.

10. Rojas LJ, Yasmin M, Benjamino J, Marshall SM, DeRonde KJ, Krishnan NP, Perez F, Colin AA, Cardenas M, Martinez O, Pérez-Cardona A. Genomic heterogeneity underlies multidrug resistance in Pseudomonas aeruginosa: A population-level analysis beyond susceptibility testing. PLoS One. 2022;17(3):e0265129.

11. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front Microbiol. 2019;10:913.

12. Bjarnsholt T, Jensen PØ, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Høiby N. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology. 2005;151(12):3873-3880.

13. Savoia D. New perspectives in the management of Pseudomonas aeruginosa infections. Future Microbiol. 2014;9(7):917-928.

14. Rivas Caldas R, Le Gall F, Revert K, Rault G, Virmaux M, Gouriou S, Héry-Arnaud G, Barbier G, Boisramé S. Pseudomonas aeruginosa and periodontal pathogens in the oral cavity and lungs of cystic fibrosis patients: a case-control study. J Clin Microbiol. 2015;53(6):1898-1907.

15. Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann Clin Microbiol Antimicrob. 2020;19:1-17

Downloads

Published

2023-01-01

How to Cite

1.
Kumar N, Vasundhara V, Kumar Chavan S. Pseudomonas aeruginosa: A Persistent Pathogen and Current Approaches to Treatment- Microbiology. Salud, Ciencia y Tecnología [Internet]. 2023 Jan. 1 [cited 2025 Mar. 10];3:404. Available from: https://sct.ageditor.ar/index.php/sct/article/view/498