A novel optimization of hybrid feature selection algorithms for image classification technique using RBFNN and MFO

Authors

DOI:

https://doi.org/10.56294/saludcyt2022241

Keywords:

MFO, Brain Tumor, Modified Fuzzy C-Means, MR Images, ; LLRBFNN

Abstract

A brain tumor develops when abnormal cells in brain tissue multiply uncontrollably. For radiologists, finding and categorizing tumors manually has become a demanding and time-consuming task. When radiologists or other clinical professionals need to extract an infected tumor area from an MR picture, they have to go through a lengthy and laborious process. To improve performance and simplify the segmentation process, we investigate the FCM-predicted picture segmentation techniques in this study. In addition, classifiers for automating the detection and reclassification of encephalon tumors receive input consisting of critical information obtained from each segmented tissue. We have assessed, verified, and demonstrated the experimental efficacy of the proposed method. The purpose of this research was to develop a novel MFO (Moth-Flame Optimization) based LLRBFNN model for the automatic detection and classification of benign and malignant brain tumors. In order to alleviate the burden of manually detecting encephalon cancers from MR images, the suggested LLRBFNN model parameters are improved via MFO training. The Modified FCM method removes outlying nodes from the LLRBFNN model, and the MFO algorithm keeps the current of node centres in the aforementioned model. The proposed MFO-LLRBFNN model was evaluated alongside the Decision Tree and the Random Forest. To prove the reliability of this model, an MFO-based LLWNN (Local Linear Wavelet Neural Network) model for autonomously detecting brain cancers was presented. We extracted features from MR images using the MFCM (modified fuzzy C-Means) segmentation algorithm and the GLCM (Gray Level Co-occurrence Matrix) technique

References

1. Kv AM, Rajendran V et al. Glioma tumor grade identification using artificial intelligent techniques. J Med Syst. 2019 Mar 21;43(5):113. doi: 10.1007/s10916-019-1228-2.

2. Cui W, Wang Y, Fan Y, Feng Y, Lei T. Localized FCM clustering with spatial information for medical image segmentation and bias field estimation. International Journal of Biomedical Imaging. 2013;2013:930301. doi: 10.1155/2013/930301.

3. Wang G, Xu J, Dong Q, Pan Z. Active contour model coupling with higher order diffusion for medical image segmentation. International Journal of Biomedical Imaging. 2014;2014:237648. doi: 10.1155/2014/237648.

4. Chaddad A. Automated feature extraction in brain tumor by magnetic resonance imaging using Gaussian mixture models. International Journal of Biomedical Imaging. 2015;2015:868031. doi: 10.1155/2015/868031.

5. Mirjalili S, Seyedali M. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Systems. 2015;89:228-249. doi: 10.1016/j.knosys.2015.07.006.

6. Charutha S, Jayashree MJ. An efficient brain tumor detection by integrating modified texture based region growing and cellular automata edge detection. 2014 Int. Conf. Control. Instrumentation, Commun. Comput. Technol. ICCICCT 2014. 2014;pp. 1193–1199. doi: 10.1109/ICCICCT.2014.6993142.

7. Iyyanar P, Arunachalam M, Patil AM, Uke N, Lal JD, Sonawane VR, Rajagopal R. A Real-Time 3D Video Streaming System Using SRTP and RTSP Protocol. IJCSNS. 2022;:45-54. doi: 10.22937/IJCSNS.2022.22.6.76.

8. Ashok K, Boddu R, Syed SA, Sonawane VR, Dabhade RG, Shaker Reddy PC. GAN base feedback analysis system for industrial IOT networks. Automatika. 2022;doi: 10.1080/00051144.2022.2140391.

9. Sonawane V, Rao DR. A comparative study: change detection and querying dynamic XML documents. International Journal of Electrical & Computer Engineering. 2015;5(4):840-848. doi: 10.11591/ijece.v5i4.pp840-848.

10. Sonawane V et al. A survey on mining cryptocurrencies. Recent Trends in Intensive Computing. 2021;:39-48. doi: 10.3233/APC210212.

11. Sonawane VR, Rao DR. An optimistic approach for clustering multi-version XML documents using compressed delta. International Journal of Electrical and Computer Engineering. 2015;5(6):1472-1479.

12. Kharade KG, et al. Text summarization of an article extracted from Wikipedia using NLTK library. In: Singh M, Tyagi V, Gupta PK, Flusser J, Ören T, Sonawane VR, editors. Advances in computing and data sciences. ICACDS 2021. Communications in Computer and Information Science. Springer; 2021. vol 1441. p. 375-385. doi:10.1007/978-3-030-88244-0_19.

13. Katkar SV, Kharade KG, Patil NS, Sonawane VR, Kharade SK, Kamat RK. Predictive modeling of tandem silicon solar cell for calculating efficiency. In: Singh M, Tyagi V, Gupta PK, Flusser J, Ören T, Sonawane VR, editors. Advances in computing and data sciences. ICACDS 2021. Communications in Computer and Information Science. Springer; 2021. vol 1441. p. 365-374. doi:10.1007/978-3-030-88244-0_18.

14. Kharade KG, Kharade SK, Sonawane VR, Bhamre SS, Katkar SV, Kamat RK. IoT based security alerts for the safety of industrial area. In: Recent trends in intensive computing. IOS Press; 2021. p. 98-103. doi:10.3233/APC210185.

15. Sonawane V, Rao DR. HCMX: an efficient hybrid clustering approach for multi-version XML documents. Journal of Theoretical and Applied Information Technology. 2015;82(1):137-148.

16. Sonawane VR, Singh LL, Nunse PR, Nalage SD. Visual monitoring system using simple network management protocol. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN). IEEE; 2015. p. 197-200. doi: 10.1109/ISITIA.2015.7220011.

17. Kumar P, Vijayakumar B. Brain tumour MR image segmentation and classification using PCA and RBF kernel-based support vector machine. Middle-East Journal of Scientific Research. 2015;23(9):2106–2116. Abdel M, Awadi RE. Brain tumor segmentation based on a hybrid clustering technique. 2015;71-81. doi: 10.5829/idosi.mejsr.2015.23.09.22458.

18. Despotović I, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. 2015. doi:10.1155/2015/450341.

19. Chandra GR, Kolasani Ramchand H. Tumor detection in brain using genetic algorithm. Measurement. 2022;100412:449-457. doi:10.1016/j.measen.2022.100412.

20. Capelle C.A.S., Fernandez-Maloigne C. Evidential segmentation scheme of multi-echo M.R. images for the detection of brain tumors using neighbourhood information. Information Fusion. 2004;5:103-216. DOI: 10.1016/j.inffus.2003.10.001.

21. Ravi A, Sreejith S. A review on brain tumor detection using image segmentation. Int J Emerg Technol Adv Eng. 2015;5:60-64. DOI: 10.22214/ijraset.2021.39184.

22. Shen D, Wu G, Suk H.-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:34-41. DOI: 10.1146/annurev-bioeng-071516-044442.

23. Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q. Brain Tumor Segmentation Based on Local Independent Projection-Based Classification. IEEE Trans Biomed Eng. 2014 Oct;61(10):2633-2645. DOI: 10.1109/TBME.2014.2325410.

24. Clark M.C., Hall L.O., Goldgof D.B., Velthuizen R., Murtagh F.R., Silbiger M.S. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging. 1998 Apr;17(2):187-201. DOI: 10.1016/j.jksuci.2018.11.001.

25. Bharanidharan N, Geetha V. Performance Analysis of KNN Classifier with and without GLCM Features in Brain Tumor Detection. 2018; pp. 103-106.

26. Seetha J, Selvakumar Raja S. Brain Tumor Classification Using Convolutional Neural Networks. 2018; pp. 1457-1461. DOI: 10.13005/bpj/1511.

Downloads

Published

2022-12-31

How to Cite

1.
Siddamallappa K, Sonawane V, Gandhewar N. A novel optimization of hybrid feature selection algorithms for image classification technique using RBFNN and MFO. Salud, Ciencia y Tecnología [Internet]. 2022 Dec. 31 [cited 2024 Nov. 21];2:241. Available from: https://sct.ageditor.ar/index.php/sct/article/view/49