Nipah virus: Analysis of the scientific production in Open Access on the Web of Science, 2000 – 2020
DOI:
https://doi.org/10.56294/saludcyt2023325Keywords:
Nipah Virus, Scientific Production, Bibliometric StudiesAbstract
Introduction: the Nipah virus causes severe disease with high mortality rates in humans. Since its discovery, it has been studied for its pandemic potential and lethality.
Objective: analyze the scientific production on the Nipah virus, to identify its trend at an international level.
Method: a descriptive, longitudinal and retrospective study of the scientific production related to the Nipah virus published in open access on the Web of Science Core Collection between 2000 and 2020 was carried out. The information search used the equation "Nipah NOT Hendra", and of each record Information regarding the year of publication, authors with their institutional affiliation, type of publication and title of the journal (for articles), country of origin of the authors was extracted. VOSviewer 1.6.17 was used to map the collaboration networks between authors and countries, as well as the co-citation network and the concurrency of keywords.
Results: 443 documents were recovered, where 79.23% are articles and 99.79% were published in English. The most productive sources are: Journal of Virology and Emerging Infections Diseases. A total of 1.724 authors were identified, observing a trend towards an increase in scientific production on the Nipah virus in the period analyzed, which allows the construction of theoretical frameworks that support strategies on this virus.
Conclusions: the analysis carried out responds to the WHO priority on monitoring this pathogen, classified as one of those with the greatest potential to generate pandemic outbreaks and high morbidity and mortality
References
1. Infomed. Revisión anual de la lista de enfermedades prioritarias de la OMS 2018. La Habana: Centro Nacional de Información de Ciencias Médicas, Infomed; 2018. Disponible en: https://temas.sld.cu/coronavirus/2018/03/29/revision-anual-de-la-lista-de-enfermedades-prioritarias-de-la-oms-2018/
2. Mattar S, González T. M. Virus Nipah, un paramixovirus que emerge de los hospedadores de vida silvestre y representa una amenaza para la salud humana. Rev MVZ Cordoba. 2019; 1(24):7089-90. DOI: https://doi.org/10.21897/rmvz.1516
3. Organización Mundial de Sanidad naimal. Código Sanitario para los Animales Terrestres, 2021. Disponible en: https://www.woah.org/es/produit/codigo-sanitario-para-los-animales-terrestres-2021/
4. Manual Terrestre de la OIE 2022. Enfermedades por los virus de Nipah y de Hendra. Disponible en: https://www.woah.org/fileadmin/Home/esp/Health_standards/tahm/3.01.14_HENDRA_&_NIPAH.pdf
5. CDC. Centers for Disease Control and Prevention. Nipah Virus (NiV). 2018. Disponible en: https://www.cdc.gov/vhf/nipah/index.html
6. WHO. Nipah virus. 2018. Disponible en: https://www.who.int/news-room/fact-sheets/detail/nipah-virus
7. Tiong V, Shu MH, Wong WF, AbuBakar S, Chang LY. Nipah Virus Infection of Immature Dendritic Cells Increases Its Transendothelial Migration Across Human Brain Microvascular Cells. Front Microbiol. 2018; 13(9):2747. DOI: https://doi.org/10.3389/fmicb.2018.02747
8. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, et al. Foodborne transmission of Nipah virus, Bangladesh. Emerging Infectious Diseases. 2006; 12(12):1888-94. DOI: https://doi.org/10.3201/eid1212.060732
9. Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, et al. Bat Nipah virus, Thailand. Emerging Infectious Diseases. 2005; 11(12):1949. DOI: https://doi.org/10.3201%2Feid1112.050613
10. Reynes JM, Conner D, Ong S, Faure C, Semg V, Molia S. Nipah virus in Lyle’s flying foxes, Cambodia. Emerging Infectious Disease. 2005; 7(11). DOI: https://doi.org/10.3201%2Feid1107.041350
11. Chong HT, Suhailah A, Tan CT. Nipah virus and bats. Neurology Asia. 2009; 14:73-6. Disponible en: http://www.neurology-asia.org/articles/20091_073.pdf
12. Lehle C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, et al. Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis. 2007; 13(1):159-61. DOI: https://doi.org/10.3201%2Feid1301.060791
13. Sanni SA, Safahieh H, Zainab AN, Abrizah A, Raj RG. Evaluating the growth pattern and relative performance in Nipah virus research from 1999 to 2010. Malaysian Journal of Library & Information Science. 2013; 18(2):14-24. Disponible en: https://ejournal.um.edu.my/index.php/MJLIS/article/view/1865
14. Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M, Clemins T, et al. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia. Emerging Infectious Diseases. 2002; 8(9):987-8. DOI: https://doi.org/10.3201%2Feid0809.010515
15. Safahieh H, Sanni SA, Zainab AN. International Contribution to Nipah Virus Research 1999-2010. ArXiv. 2012; 17(3):35-47. DOI: https://doi.org/10.48550/arXiv.1301.5384
16. Gupta BM, Ahmed KKM, Gupta R. Nipah Virus Research: A Scientometric Assessment of Global Publications Output during 1999-2018. International Journal of Medicine and Public Health. 2018; 8(2):48-55. DOI: https://doi.org/10.5530/ijmedph.2018.2.11
17. Sivaprakasam S, Joshua V. Nipah Virus: An Exploratory Scientometrics Analysis, 1999-2018. Journal of Scientometic Research. 2019; 8(2):109-16. DOI: http://dx.doi.org/10.5530/jscires.8.2.17
18. Clarivate. Web of Science Journal Evaluation Process and Selection Criteria 2021. Disponible en: https://clarivate.com/webofsciencegroup/journal-evaluation-process-and-selection-criteria/
19. Gregorio-Chaviano O, López Mesa E, Limaymanta C. Web of Science como herramienta de y sombras de sus colecciones, productos e indicadores. e-Ciencias de la Información. 2022; 12(1). DOI: https://doi.org/10.15517/eci.v12i1.46660
20. Repiso R, Moreno-Delgado A, Aguaded I. Factors affecting the frequency of citation of an article. Iberoamerican Journal of Science Measurement and Communication. 2020;1(1):007. https://doi.org/10.47909/ijsmc.08.
21. Cano CAG, Castillo VS, Gallego TAC. Mapping the Landscape of Netnographic Research: A Bibliometric Study of Social Interactions and Digital Culture. Data & Metadata 2023;2:25. https://doi.org/10.56294/dm202325.
22. Arencibia-Jorge R, García-García L, Galban-Rodriguez E, Carrillo-Calvet H. The multidisciplinary nature of COVID-19 research. Iberoamerican Journal of Science Measurement and Communication 2021;1:003. https://doi.org/10.47909/ijsmc.13.
23. Rodriguez JML, Auza-Santiváñez JC, Guerra-Chagime R, López DES. Producción científica cubana sobre Medicina Intensiva y Emergencias en Scopus (2019-2021). Data & Metadata 2022;1:3. https://doi.org/10.56294/dm20223.
24. Rocha ES, Araújo RF. Rapid scientific communication in times of pandemic: the attention of pre-prints online about Covid-19. Advanced Notes in Information Science 2022;2:103-11. https://doi.org/10.47909/anis.978-9916-9760-3-6.114.
25. Ledesma F, González BEM. Bibliometric indicators and decision making. Data & Metadata 2022;1:9. https://doi.org/10.56294/dm20229.
26. Carmo D do, Lemos DL da S. Quality standards for data and metadata addressed to data science applications. Advanced Notes in Information Science 2022;2:161-70. https://doi.org/10.47909/anis.978-9916-9760-3-6.116.
27. Castillo JIR. Identifying promising research areas in health using bibliometric analysis. Data & Metadata 2022;1:10. https://doi.org/10.56294/dm202210
Published
Issue
Section
License
Copyright (c) 2023 Yudayly Stable-Rodríguez, Manuel Osvaldo Machado Rivero, Lee Yang Díaz-Chieng (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.