Cardiometabolic effect of sodium and glucosa cotransporter inhibitors type 2

Authors

DOI:

https://doi.org/10.56294/saludcyt2023563

Keywords:

Diabetes, Cotransporter, Sodium, Glucose, Cardioprotection, Cost Effectiveness

Abstract

Introduction: type 2 diabetes mellitus has emerged as a leading cause of premature death and a growing threat to the healthcare system due to the high costs of medical care in the context of cardiovascular complications. 
Methods: we conducted a systematic electronic search of clinical trials published from 2015 to January 2023 in PubMed, Scopus, Web of Science and ScieLO databases, which evaluated the efficacy and safety of the use of type 2 sodium-glucose cotransporter inhibitors in patients with type 2 diabetes mellitus and established cardiovascular disease on routine treatment and their cost-effectiveness.
Results: significantly lower rates of acute myocardial infarction, stroke, cardiovascular death and hospitalization due to heart failure were observed when the study drugs were added to standard therapy. In addition, it was evidenced that the reduction in cardiovascular clinical events manages to offset the cost of type 2 sodium-glucose cotransporter inhibitors resulting in a cost-effective use of resources at the health care level.
Conclusions: as the transition to a new evidence-based era of managing patients with type 2 diabetes mellitus and cardiovascular disease progresses, it is imperative that new therapies are developed that not only improve glycemic control, but also improve cardiovascular outcomes, because these events represent the major cause of mortality in this population

References

1. Syed-Z F. Type 1 Diabetes Mellitus. Annals of Internal Medicina. 2022;175(3). doi: https://doi.org/10.7326/AITC202203150

2. Cheng-Xu M, Xiao-Ni M, Cong-Hui G., Ying-Dong L, Dídac M, Song-Bo F. Enfermedad cardiovascular en la diabetes mellitus tipo 2: avances hacia el manejo personalizado. Diabetología cardiovascular. 2022;21(74):1-15. doi: https://doi.org/10.1186/s12933-022-01516-6

3. Sharma A, Mittal S, Aggarwal R. Diabetes and cardiovascular disease: inter-relation of risk factors and treatment. Future Journal of Pharmaceutical Sciencies. 2020;6(130):1-19. doi: https://doi.org/10.1186/s43094-020-00151-w

4. Zavala-Calahorrano A, Fernández E. Diabetes mellitus tipo 2 en el Ecuador. MEDICIENCIAS UTA. 2018;2(4):3-9. doi: https://doi.org/10.31243/mdc.uta.v2i4.132.2018

5. Jonathan V. [Internet]. Quito. 2017 [citado el 13 de jun 2023]. Disponible en: https://www.edicionmedica.ec/secciones/salud-publica/-cu-nto-cuesta-la-atenci-n-de-los-pacientes-con-diabetes-tipo-2--91250

6. DeFronzo R, Inzucchi S, Abdul-Ghani M, Nissen S. Pioglitazone: The forgotten, cot-effective cardioprotective drug for type 2 diabetes. Sage Journals. 2019;16(2):133-143. doi: https://doi.org/10.1177/1479164118825376

7. García-Arias M, Gonzaga-López T, González-Fernández N, Guzmán-Ramírez P, Ángeles-Acuña A, Enríquez-Peregrino K, et al. Efecto cardiometabólico de los inhibidores del cotransportador sodio glucosa tipo 2 (SGLT2). Med Int Mex. 2018;34(6):924-932. doi: https://doi.org/10.24245/mim. v34i6.2140

8. Rovalino-Castro M, Betancourt Constante M. Revisión bibliográfica sobre diagnóstico y tratamiento de diabetes mellitus tipo 2 en pacientes con síndrome metabólico. RECIMUNDO. 2022;6(1):319-330. doi: 10.26820/recimundo/6.(suppl1).junio.2022.319-330

9. Fonseca-Correa J, Correa Rotter R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front Med. 2021;8 (77):1-7. doi: 10.3389/fmed.2021.777861

10. Morrillas H, Galcera E, Alania E, Seller J, Larumbe A, Nuñez J, Valle A. Sodium-glucose Co-transporter 2 Inhibitors in Acute Heart Failure: A Review of the Available Evidence and Practical Guidance on Clinical Use. Rev. Cardiovasc. Med. 2022;23(4):1-13. doi: 10.31083/j.rcm2304139

11. Zinman B, Wanner C, Lachin J, Fitchett D, Bluhmin E, Hantel S, et al. Empaglifozina, Cardiovascular Outcomes, and Mortality en Type 2 Diabetes. NEJM. 2015,373(22):2117-28. doi: 10.1056/NEJMoa1504720

12. Fitchett D, Inzucchi S, Cannon C, McGuire D, Scirica B, Johansen O, et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation. 2019;139(11):1384-95. doi: 10.1161/CIRCULATIONAHA.118.037778

13. Neal B, Perkovic V, Mahaffey K, de Zeeuw D, Fulcher G, Erondu N, et al. Canaglifozina and Cardiovascular and Renal Events in Type 2 Diabetes. NEJM. 2017;377(7):644-57. doi: 10.1056/NEJMoa1611925

14. Wiviott S, Raz I, Bonaca M, Mosenzon O, Kato E, Cahn A, et al. Dapaglifozina and Cardiovascular Outcomes in Type 2 Diabetes. NEJM. 2019;380(4):347-57. Disponible en: doi: 10.1056/NEJMoa1812389

15. McMurray J, Solomon S, Inzucchi S, Kober L, Kosiborod M, Martinez F, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. NEJM. 2019,381(21)1995-2008. doi: 10.1056/NEJMoa1911303

16. Consentino F, Cannon C, Cherney D, Masiukiewicz U, Pratley R, Dagogo-Jack S, et al. Efficacy of Ertugliflozin on Heart Failure–Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease. Circulation. 2020;142 (23):2205-15. doi: 10.1161/CIRCULATIONAHA.120.050255

17. Bhatt D, Szarek M, Pitt B, Cannon C, Leiter L, McGuirre D, et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. NEJM. 2021;384(2):129-39. doi: 10.1056/NEJMoa2030186

18. Bhatt D, Szarek M, Steg P, Cannon C, Leiter L, McGuire D, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. NEJM. 2021;384(2):117-28. doi: 10.1056/NEJMoa2030183

19. McGuire D, Shih W, Consentino F, Charbonnel B, Cherney D, Dagogo-Jack S, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes. JAMA Cardiol. 2021;6(2):148-58. doi: 10.1001/jamacardio.2020.4511

20. Kansal A, Reifsnider S, Proskorovsky I, Zheng Y, Pfarr E, George J, et al. Cost-effectiveness analysis of empagliflozin treatment inpeople with Type 2 diabetes and establishedcardiovascular disease in the EMPA-REG OUTCOME trial. Diabetic Medicine. 2019;36(11):1494-1502. doi: 10.1111/dme.14076

21. Kaku K, Haneda M, Sakamaki H, Atsutaka Y, Murata T, Ustiugova A, et al. Cost-effectiveness Analysis of Empagliflozin in Japan Based on Results From the Asian subpopulation in the EMPA-REG OUTCOME Trial. Clinical Therapeutics. 2019;41(10):2021-40. doi: https://doi.org/10.1016/j.clinthera.2019.07.016

22. Abushanab D, Al-Badriyen D, Lee D, Ademi Z. First-line Treatment with Empagliflozin and Metformin Combination Versus Standard Care for Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease in Qatar. A Cost-Effectiveness Analysis. Curr Probl Cardioll. 2021;47(6):1-20. doi: 10.1016/j.cpcardiol.2021.100852

23. McEwan P, Morgan A, Boyce R, Bergenheim K, Gause-Nilsson I, Bhatt D, et al. The cost-effectiveness of dapagliflozin in treating high-risk patients with type 2 diabetes mellitus: An economic evaluation using data from the DECLARE-TIMI 58 trial. Diabetes Obes Metab. 2021;23(4):1020-29. doi: 10.1111/dom.14308

24. McEwan P, Bennett H, Khunti K, Wilding J, Edmonds C, Thuresson M, et al. Assessing the cost-effectiveness of sodium–glucose cotransporter-2 inhibitors in type 2 diabetes mellitus: A comprehensive economic evaluation using clinical trial and real-world evidence. Diabetes Obes Metab. 2020;22(12):2364-74. doi: 10.1111/dom.14308

Downloads

Published

2023-10-16

Issue

Section

Systematic reviews or meta-analyses

How to Cite

1.
Olmedo-Muñoz M, Recalde-Navarrete R. Cardiometabolic effect of sodium and glucosa cotransporter inhibitors type 2. Salud, Ciencia y Tecnología [Internet]. 2023 Oct. 16 [cited 2025 Apr. 15];3:563. Available from: https://sct.ageditor.ar/index.php/sct/article/view/338