Implementation of technological devices used by occupational therapists in upper extremity rehabilitation after a stroke
DOI:
https://doi.org/10.56294/saludcyt2023694Keywords:
Exoskeleton, Occupational Therapy, Stroke, Brain-Computer Interface, Assistive TechnologiesAbstract
Rehabilitation with exoskeletons in people with acquired brain injury is a topic of interest for researchers, since these robotic devices seek to recover the sensorimotor sequelae caused by the injury and improve the performance of the injured patient in activities of daily living. The objective of this study was to identify the contributions provided by the implementation of exoskeleton devices used by occupational therapy in the rehabilitation of upper limb in patients with stroke sequelae. The method used was a narrative review, with search strategies in the following databases: Scopus, Science Direct, Google Scholar and Pubmed. Published papers in English, Spanish and Portuguese were considered, with key words in the titles and/or ABSTRACTS. A total of 578 papers were identified and 7 were those that met the criteria for inclusion in this research. The results showed that exoskeleton-type devices enhance conventional rehabilitation, with glove-type exoskeletons, assisted limb and brain-computer interface powered exoskeletons standing out in this process. These, when incorporated by occupational therapists in rehabilitation, have shown to generate improvements in motor functionality and manipulative dexterity, which have been evidenced in both acute and chronic stages, generating an increase in the performance of users in carrying out their activities of daily living
References
1. De La Cruz-Sánchez BA, Arias-Montiel M, Lugo-González E. Diseño y Construcción de un Prototipo de Exoesqueleto para Rehabilitación de Mano. Memorias del Congreso Nacional de Ingeniería Biomédica Internet]; 2018 Oct 18-20; Sociedad Mexicana de Ingeniería Biomédica, Mexico City, Mexico. D.F (MEX): Sociedad Mexicana de Ingeniería Biomédica, 2018;5(1). p. 398-401. http://memoriascnib.mx/index.php/memorias/article/view/596
2. Diaz Suárez RA, Moreno Moreno LT, Sanjuan Vargas MA, Prada Garcia CA, Torres LD. Development of an exoskeleton for the rehabilitation of the flexo-extensor movement of the elbow. ITECKNE. 2021;18(1):46-51. https://doi.org/10.15332/iteckne.v18i1.2539
3. He P, Kantu NT, Xu B, Swami CP, Saleem GT, Kang J. A Novel 3-RRR Spherical Parallel Instrument for Daily Living Emulation (SPINDLE) for Functional Rehabilitation of Patients with Stroke. International Journal of Advanced Robotic Systems. 2021;18(3). https://doi.org/10.1177/17298814211012325
4. Cisnal A, Lobo V, Moreno V, Fraile JC, Alonso R, Turiel JP. Robhand, un exoesqueleto de mano para la rehabilitación neuromotora aplicando terapias activas y pasivas. Actas de las XXXIX Jornadas de Automática Internet]; Comité Español de Automática, Bajadoz, Spain. Extremadura (SP): Comité Español de Automática, 2018. p. 34-41. https://doi.org/10.17979/spudc.9788497497565.0034
5. Gonzalez-Argote J. Uso de la realidad virtual en la rehabilitación. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:24-24. https://doi.org/10.56294/ri202224
6. Du Plessis T, Djouani K, Oosthuizen C. A Review of Active Hand Exoskeletons for Rehabilitation and Assistance. Robotics. 2021;10(1):1-42. https://doi.org/10.3390/robotics10010040
7. Alfonso Mantilla JI, Martínez Santa J. Tecnología de asistencia: exoesqueletos robóticos en rehabilitación. Movimiento Científico. 2017;10(2):83-90. https://doi.org/10.33881/2011-7191.mct.10207
8. Organización Mundial de la Salud Internet]. Enfermedades cardiovasculares, 17 de mayo de 2017 citado el 22 de mayo de 2023]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
9. Organización Mundial de la Salud Internet]. La OMS revela las principales causas de muerte y discapacidad en el mundo: 2000-2019, 9 de diciembre de 2020 citado en Mayo 27 de 2023]. Disponible en: https://www.paho.org/es/noticias/9-12-2020-oms-revela-principales-causas-muerte-discapacidad-mundo-2000-2019
10. Castaño CM, Peñaranda YP, Bernal MYP, y Ruíz JC. Aplicación de la terapia robótica para el tratamiento de la mano espástica del adulto con hemiplejía. Artículo de revisión. Rev Mex Med Fis Rehab. 2015;27(3-4):80-85. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=66401
11. Ibarra Moyers LM. Entrevista con Jacques Laeuffer. Gaiabit Internet]. 29 de marzo de 2023 citado el 16 de mayo de 2023]. Disponible en: https://gaiabit.com/entrevista-con-jacques-laeuffer/
12. Ferro YE, Trujillo DM, Llibre JJ. Prevalencia y asociaciones de riesgo del deterioro cognitivo leve en personas mayores de una comunidad. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:12-12. https://doi.org/10.56294/ri202212
13. Organización Panamericana de Salud Internet]. Marco de competencias en rehabilitación de la OMS, 26 de marzo de 2021 citado el 2 de junio de 2023]. Disponible en: www.paho.org/es/temas/rehabilitacion
14. Lee H, Ferguson PW, Rosen J. Lower Limb Exoskeleton Systems—Overview. En: Rosen J, Ferguson PW, editors. Wearable Robotics. Academic Press; 2020. p. 207-229. https://doi.org/10.1016/B978-0-12-814659-0.00011-4
15. Montesino DC, Reguera IP, Fernández OR, Relova MR, Valladares WC. Caracterización clínica y epidemiológicamente de la discapacidad en la población adulta mayor. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:15-15. https://doi.org/10.56294/ri202215
16. Pérez Medina Y, López Mejía V. Intervención del Terapeuta Ocupacional sobre el conocimiento del movimiento funcional de un exoesqueleto para miembro superior diseñado por el área de ingeniería de MicrobotiX. Tesis en Internet]. Ciudad de México (MEX): Repositorio Institucional de la Universidad Autónoma del Estado de México; 2013. http://ri.uaemex.mx/handle/20.500.11799/14143
17. Iwamoto Y, Imura T, Suzukawa T, Fukuyama H, Ishii T, Taki S, et al. Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients. Journal of Stroke and Cerebrovascular Diseases. 2019;28(7): 2018-2025. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.006
18. Orihuela-Espina F, Roldán GF, Sánchez-Villavicencio I, Palafox L, Leder R, Sucar LE, et al. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial. Journal of Hand Therapy. 2016;29(1):51-57. https://doi.org/10.1016/j.jht.2015.11.006
19. Angerhöfer C, Colucci A, Vermehren M, Hömberg V, Soekadar SR. Post-stroke Rehabilitation of Severe Upper Limb Paresis in Germany – Toward Long-Term Treatment With Brain-Computer Interfaces. Frontiers in Neurology. 2021;12:1-7. https://doi.org/10.3389/fneur.2021.772199
20. Zanona, A. D. F., Piscitelli, D., Seixas, V. M., Scipioni, K. R. D. D. S., Bastos, M. S. C., De Sá, L. C. K., Monte-Silva, K., Bolivar, M., Solnik, S., y De Souza, R. F. (2023). Brain-computer interface combined with mental practice and occupational therapy enhances upper limb motor recovery, activities of daily living, and participation in subacute stroke. Frontiers in Neurology.13:1041978 https://doi.org/10.3389/fneur.2022.1041978
21. Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. Journal of Stroke. 2013;15(3):174-181. https://doi.org/10.5853/jos.2013.15.3.174
22. Inastrilla CRA. Big Data in Health Information Systems. Seminars in Medical Writing and Education 2022;1:6-6. https://doi.org/10.56294/mw20226
23. Proulx CE, Beaulac M, David M, Deguire C, Haché C, Klug F, et al. Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event. Journal of Rehabilitation and Assistive Technologies Engineering. 2020:7. https://doi.org/10.1177/2055668320918130
24. Li W, Xu D. Application of intelligent rehabilitation equipment in occupational therapy for enhancing upper limb function of patients in the whole phase of stroke. Medicine in Novel Technology and Devices. 2021;12:1-8. https://doi.org/10.1016/j.medntd.2021.100097
25. Arias Muñoz VP. Evaluación de funcionalidad de un exoesqueleto de mano en usuarios sanos Tesis en Internet]. Bogotá (COL): Escuela Colombiana de Ingeniería Julio Garavito; 2021. https://repositorio.escuelaing.edu.co/handle/001/1523
26. Martínez LJ. Efectividad de los exoesqueletos para rehabilitación en extremidad superior en pacientes post-ACV. Tesis en Internet]. Illes Balears (SP): Universitat de les Illes Balears]; 2019. https://dspace.uib.es/xmlui/handle/11201/153254
27. Cardona MAC, Spitia FR, López AB. Exoesqueletos para potenciar las capacidades humanas y apoyar la rehabilitación. Revista Ingeniería Biomédica. 2010;4(7):63-73. https://doi.org/10.24050/19099762.n7.2010.88
28. Chen Z, Xia N, He C, Gu M, Xu J, Han X, et al. (2021). Action observation treatment-based exoskeleton (AOT-EXO) for upper extremity after stroke: Study protocol for a randomized controlled trial. Trials. 2021;22(222). https://doi.org/10.1186/s13063-021-05176-x
29. Cerasa A, Pignolo L, Gramigna V., Serra S, Olivadese G, Rocca F, et al. Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study. Frontiers in Neuroinformatics. 2018;12(44). https://doi.org/10.3389/fninf.2018.00044
30. Greco C, Weerakkody TH, Cichella V, Pagnotta L, Lamuta C. Lightweight Bioinspired Exoskeleton for Wrist Rehabilitation Powered by Twisted and Coiled Artificial Muscles. Robotics. 2023;12(1). https://doi.org/10.3390/robotics12010027
31. Girges C, Vijiaratnam N, Zrinzo L, Ekanayake J, Foltynie T. (Volitional Control of Brain Motor Activity and Its Therapeutic Potential. Neuromodulation: Technology at the Neural Interface. 2022;25(8):1187-1196. https://doi.org/10.1016/j.neurom.2022.01.007
32. Pignolo L, Servidio, R., Basta, G., Carozzo, S., Tonin, P., Calabrò, R. S., y Cerasa, A. The Route of Motor Recovery in Stroke Patients Driven by Exoskeleton-Robot-Assisted Therapy: A Path-Analysis. Medical Sciences. 2021;9(4),1-10. https://doi.org/10.3390/medsci9040064
33. Colucci A, Vermehren M, Cavallo A, Angerhöfer C, Peekhaus N, Zollo L, et al. Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not? Neurorehabilitation and Neural Repair. 2022;36(12):747-756. https://doi.org/10.1177/15459683221138751
34. Inastrilla CRA. Data Visualization in the Information Society. Seminars in Medical Writing and Education 2023;2:25-25. https://doi.org/10.56294/mw202325
35. Terranova TT, Simis M, Santos ACA, Alfieri FM, Imamura M, Fregni F, et al. Robot-Assisted Therapy and Constraint-Induced Movement Therapy for Motor Recovery in Stroke: Results From a Randomized Clinical Trial. Frontiers in Neurorobotics. 2021;15:1-9 https://doi.org/10.3389/fnbot.2021.684019
Published
Issue
Section
License
Copyright (c) 2023 Paola Ruiz-Sáez, Lorena Velásquez-Oberreuter, Nicole Torres Zúñiga, Michelle Lapierre Acevedo (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.