Antidiabetic Effect of Raru (Vatica perakensis) Bark Extract and Mocaf Activated Carbon in Streptozotocin-induced Diabetic Ratsntidiabetic Effect of Raru (Vatica perakensis) Bark Extract and Mocaf Activated Carbon in Streptozotocin-induced Diabetic Rats
DOI:
https://doi.org/10.56294/saludcyt20252665Keywords:
Antidiabetic, Extract, In-vivo, MAC, RaruAbstract
Introduction: the natural benefits of raru as a natural sweetness reducer. Batak people have practiced for generations, form the basis for exploring raru as a biomedicine ingredient for anti-diabetes. Objective: this study aims to combine the raru's bark extract with tapioca-derived MAC (mocaf activated carbon) to assess its effectiveness and bioactivity as an anti-diabetic agent in male Sprague Dawley rats. Methods: The carbonization technique used was inherently hydrothermal carbonization. For such, the modified tapioca flour was carbonized at a temperature of 250°C for 6 hours. Raru bark powder was extracted using ethanol 70 % by maceration for 72 hours. In vivo antidiabetic activity was used on Sprague Dawley rats, male, aged ± 12 weeks, with a weight of ± 250-350 grams. Results: the result showed that the anti-diabetic activity of the combined raru's extract and MAC exposed to the rats brought about the declines in glucose levels in the rat's blood. The various treatments at different concentration ratios of raru's extract and MAC supposedly efficacious in the experiments showed that the levels of blood level reduction were slightly varied (14-21%). The mixture of raru's extract and MAC with a 75:25 ratio was better than a 50:50 ratio in lowering the blood glucose level. Conclusion: In vivo experiments can reduce blood sugar levels diabetic rats. The involvement of MAC in the alleged anti-diabetic agent did little to induce the glucose level decrease in the rat's blood. However, raru's extract and MAC indicate its potential utilization as an anti-diabetic agent.
References
1. International Diabetes Federation. IDF Diabetes Atlas 2019. Brussel; 2019. (9th Edition).
2. Zhu Y, Zhao J, Luo L, Gao Y, Bao H, Li P. Research progress of indole compounds with potential antidiabetic activity. Eur J Med Chem. 2021;223:113665. DOI: https://doi.org/10.1016/j.ejmech.2021.113665
3. Li R, Tang N, Jia X, Xu Y, Cheng Y. Antidiabetic activity of galactomannan from Chinese Sesbania cannabina and its correlation of regulating intestinal microbiota. J Funct Foods. 2021;83:104530. DOI: https://doi.org/10.1016/j.jff.2021.104530
4. Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complement Altern Med. 2017;17:1–9. DOI: https://doi.org/10.1186/s12906-017-1757-5
5. Gaonkar VP, Hullatti K. Indian Traditional medicinal plants as a source of potent Anti-diabetic agents: A Review. J Diabetes Metab Disord. 2020;19(2):1895–908. DOI: https://doi.org/10.1007/s40200-020-00628-8
6. Wasana KGP, Attanayake AP, Jayatilaka KAPW, Weerarathna TP. Antidiabetic Activity of Widely Used Medicinal Plants in the Sri Lankan Traditional Healthcare System: New Insight to Medicinal Flora in Sri Lanka. Evidence-based Complement Altern Med. 2021;2021. DOI: https://doi.org/10.1155/2021/6644004
7. Firdausya H, Amalia R. Review Jurnal: Aktivitas dan Efektivitas Antidiabetes pada Beberapa Tanaman Herbal. Farmaka. 2020;18(1):162–70.
8. Pasaribu G. Inhibition Activity of Alpha Glucosidase from Several Stem Bark of Raru. J Penelit Has Hutan. 2011;29(1):10–9. DOI: https://doi.org/10.20886/jphh.2011.29.1.10-19
9. Pasaribu G, Setyawati T. Antioxidant and Toxicity Activity of Raru (Cotylelobium sp.) Stem Bark. J Penelit Has Hutan. 2011;29(4):322–30. DOI: https://doi.org/10.20886/jphh.2011.29.4.322-330
10. Situmorang ROP, Harianja AH, Silalahi J. Karo’s Local Wisdom : The Use of Woody Plants for Traditional Diabetic Medicines. Indones J For Res. 2015;2(2):121–31. DOI: https://doi.org/10.59465/ijfr.2015.2.2.121-130
11. Iqbal Y, Malik AR, Iqbal T, Aziz MH, Ahmed F, Abolaban FA, et al. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater Lett. 2021;130671. DOI: https://doi.org/10.1016/j.matlet.2021.130671
12. El-bagory I, Alruwaili NK, Elkomy MH, Ahmad J, Afzal M, Ahmad N, et al. Development of novel dapagliflozin loaded solid self-nanoemulsifying oral delivery system : Physiochemical characterization and in vivo antidiabetic activity. J Drug Deliv Sci Technol. 2019;54(August):101279. DOI: https://doi.org/10.1016/j.jddst.2019.101279
13. Emin M, Ertas B, Alenezi H, Hazar-yavuz AN, Cesur S, Sinemcan G, et al. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds : An in vitro and in vivo evaluation study. Mater Sci Eng C. 2021;119(April 2020):111586. DOI: https://doi.org/10.1016/j.msec.2020.111586
14. Ambalavanan R, John AD, Selvaraj AD. Nano-encapsulated Tinospora cordifolia ( Willd .) using poly ( D , L-lactide ) nanoparticles educe effective control in streptozotocin- induced type 2 diabetic rats. IET Nanobiotechnology. 2020;14(9):803–8. DOI: https://doi.org/10.1049/iet-nbt.2020.0085
15. Avila MI, Alonso-Morales N, Gilarranz MA, Baeza A, Rodrıguez JJ, Gillaranz M. High load drug release system based on carbon porous nanocapsule carriers . Ibuprofen case study. J Mater Chem B. 2020;8:5293–304. DOI: https://doi.org/10.1039/D0TB00329H
16. Tanemura K, Rohand T. Activated charcoal as an effective additive for alkaline and acidic hydrolysis of esters in water. Tetrahedron Lett. 2020;61(44):152467. DOI: https://doi.org/10.1016/j.tetlet.2020.152467
17. Hagiwara A, Takahashi T, Kitamura K, Sakakura C, Shirasu M, Ohgaki M, et al. Endoscopic local injection of a new drug delivery formulation , anticancer drug bound to carbon particles , for digestive cancers : Pilot study. J Gastroenterol. 1997;32:141–7. DOI: https://doi.org/10.1007/BF02936359
18. Yadavalli T, Ames J, Agelidis A, Suryawanshi R, Jaishankar D. Drug-encapsulated carbon ( DECON ): A novel platform for enhanced drug delivery. Sci Adv. 2019;5:1–13. DOI: https://doi.org/10.1126/sciadv.aax0780
19. Zhang Y, Zhi Z, Li X, Gao J, Song Y. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int J Pharm. 2013;454(1):403–11. DOI: https://doi.org/10.1016/j.ijpharm.2013.07.009
20. Inagaki M. Pores in carbon materials-importance of their control. New Carbon Mater. 2009;24(3):193–232. DOI: https://doi.org/10.1016/S1872-5805(08)60048-7
21. Wang X, Liu P, Tian Y. Ordered mesoporous carbons for ibuprofen drug loading and release behavior. Microporous Mesoporous Mater. 2011;142(1):334–40. DOI: https://doi.org/10.1016/j.micromeso.2010.12.018
22. Falco C, Morallo E, Titirici MM. Tailoring the porosity of chemically activated hydrothermal carbons : Influence of the precursor and hydrothermal carbonization temperature. Carbon N Y. 2013;2. DOI: https://doi.org/10.1016/j.carbon.2013.06.017
23. Falco C, Caballero FP, Babonneau F, Gervais C, Laurent G, Titirici M, et al. Hydrothermal Carbon from Biomass : Structural Differences between Hydrothermal and Pyrolyzed Carbons via 13 C Solid State NMR. Langmuir. 2011;14460–71. DOI: https://doi.org/10.1021/la202361p
24. Aravind M, Amalanathan M. Structural , morphological , and optical properties of country egg shell derived activated carbon for dye removal. Mater Today Proc. 2021;43:1491–5. DOI: https://doi.org/10.1016/j.matpr.2020.09.311
25. Yuan C, Lin H, Lu H-Y, Xing E, Zhang Y, Xie B. Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl Energy. 2016;178:260–8. DOI: https://doi.org/10.1016/j.apenergy.2016.06.057
26. Islam A, Tan IAW, Benhouria A, Asif M, Hameed BH. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chem Eng J. 2015;270:187–95. DOI: https://doi.org/10.1016/j.cej.2015.01.058
27. Promdee K, Chanvidhwatanakit J, Satitkune S. Characterization of carbon materials and di ff erences from activated carbon particle ( ACP ) and coal briquettes product ( CBP ) derived from coconut shell via rotary kiln. Renew Sustain Energy Rev. 2017;75(July 2016):1175–86. DOI: https://doi.org/10.1016/j.rser.2016.11.099
28. Liu R, Xie Y, Cui K, Xie J, Zhang Y, Huang Y. Adsorption behavior and adsorption mechanism of glyphosate in water by amino-MIL-101 ( Fe ). J Phys Chem Solids. 2022;161:110403. DOI: https://doi.org/10.1016/j.jpcs.2021.110403
29. Pires E, García-bordej E. Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. 2017;123. DOI: https://doi.org/10.1016/j.carbon.2017.07.085
30. Pari G, Darmawan S, Prihandoko B. Porous Carbon Spheres from Hydrothermal Carbonization and KOH Activation on Cassava and Tapioca Flour Raw Material. Procedia Environ Sci. 2014;20:342–51. DOI: https://doi.org/10.1016/j.proenv.2014.03.043
31. Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent Progress on Nanostructures for Drug Delivery Applications. J Nanomater. 2016;2016. DOI: https://doi.org/10.1155/2016/5762431
32. Çeçen F. Activated Carbon. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc; 2014.
33. Patra JK, Das G, Fraceto LF, Vangelie E, Campos R, Rodriguez P, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(71):1–33. DOI: https://doi.org/10.1186/s12951-018-0392-8
34. Anisah LN, Syafii W, Pari G, Sari RK. Antidiabetic activities and identification of chemical compound from samama (Anthocephalus macrophyllus (Roxb) Havil). Indones J Chem. 2018;18(1):66–74. DOI: https://doi.org/10.22146/ijc.25492
35. Deka H, Choudhury A, Dey BK. An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes. 2022;25(3):199–208. DOI: https://doi.org/10.3831/KPI.2022.25.3.199
36. Ye L, Huang H, Zhang S, Lu J, Wu D, Chi P, et al. Streptozotocin-Induced Hyperglycemia Affects the Pharmacokinetics of Koumine and its Anti-Allodynic Action in a Rat Model of Diabetic Neuropathic Pain. 2021;12(May):1–12. DOI: https://doi.org/10.3389/fphar.2021.640318
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gunawan Pasaribu, Novitri Hastuti, Saptadi Darmawan, Gustan Pari, Lisna Efiyanti, Sigit Baktya Prabawa, Totok K. Waluyo, Yelin Adalina, Andianto, Soenarno, Agus Ismanto, Alfonsus H. Harianja (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.