The Impact of Visualization Integration and Mason's Theory in Real Analysis Learning on Students' Mathematical Proof Abilitie
DOI:
https://doi.org/10.56294/saludcyt20252643Keywords:
Visualization, Mason's Theory, Mathematical Proof, Real AnalysisAbstract
Introduction: mathematical proof abilities are crucial for mathematics students because mathematics is full of theories and concepts that must be proven. Mathematical proof is the core of the Real Analysis course. However, most students struggle with this course because the topic consists of abstract concepts and proofs. Providing visualizations of abstract concepts and Mason's framework of thought is expected to be a solution to help students conduct proofs.
Methods: this research is a descriptive qualitative study. The research instruments were a mathematical proof test in the form of an essay and a structured interview guide. The research subjects were: one class of 35 students of the Mathematics Education study program, Faculty of Mathematics and Natural Sciences, Padang State University (Indonesia). For the interview, 3 people were taken from the lower group and 3 people from the upper group. Data analysis was carried out using descriptive analysis.
Results: the results of the mathematical proof test showed that there was an increase in students' mathematical proofs before and after learning that integrated visualization and Mason's framework of thinking. From the interview results, it was found that: for students in the lower group, the use of visualization could improve their understanding of abstract concepts but they were not yet able to write proofs well. Meanwhile, students in the upper group, the use of visualization could improve their understanding of abstract concepts and write proofs and describe them in the good and very good categories
Conclusions: use Mason's visualization and conceptual framework in learning can improve students' mathematical proofs. Although the improvement is not significant, lower-level students saw improvements at the cognitive level of understanding, while higher-level students saw improvements at the application and analysis levels.
References
1. Radiusman R. Studi Literasi: Pemahaman Konsep Anak Pada Pembelajaran Matematika. FIBONACCI J Pendidik Mat dan Mat. 2020;6(1):1. DOI: https://doi.org/10.24853/fbc.6.1.1-8
2. Firmasari S, Herman T, Firdaus EF. Rigorous Mathematical Thinking: Conceptual Knowledge and Reasoning in the Case of Mathematical Proof. Kreano, J Mat Kreat. 2022;13(2):246–56. DOI: https://doi.org/10.15294/kreano.v13i2.34536
3. Altıparmak, K., & Öziş T. An investigation upon mathematical proof and development of mathematical reasoning. Ege J Educ 6(1), 25–37 [Internet]. 2005; Available from: https://dergipark.org.tr/tr/pub/egeefd/issue/4918/67296
4. Halpern JY, Pucella R. A Logic for Reasoning about Evidence. J Artif Intell Res. 2006;25:1–34. DOI: https://doi.org/10.1613/jair.1838
5. Hanna G. Proof, explanation, and exploration: An overview. Educ Stud Math 44, 5–23 [Internet]. 2000; Available from: https://doi.org/10.1023/A:1012737223465 DOI: https://doi.org/10.1023/A:1012737223465
6. Nance DA. The Best Evidence Principle. Case Western Reserve University: Faculty Publications; 1988. 463 p.
7. CadwalladerOlsker T. What Do We Mean by Mathematical Proof? J Humanist Math. 2011;1(1):33–60. DOI: https://doi.org/10.5642/jhummath.201101.04
8. Helma, Murni D. PENGEMBANGAN LEMBARAN KERJA AKTIF MENGINTEGRASIKAN STATEMENT AND REASON UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH. 2020;(184).
9. Kari Jabbour K. Multimedia Principle in Teaching Lessons. Acta Didact Napocensia. 2012;5(4):11–6.
10. Mayer R. e‐Learning: Promise and Pitfalls. e‐Learning and the Science of Instruction. 2016. 7–28 p. DOI: https://doi.org/10.1002/9781119239086.ch1
11. Budiman H. Penggunaan Media Visual dalam Proses Pembelajaran, Al-Tadzkiyyah: , Vol. 7, (2016), h. 177. J Pendidik Agama Islam. 2016;7(45):177.
12. Badruzaman, A., Nurdin, S., & Apriliya S. Pengaruh Penggunaan Media Visual Terhadap Hasil Belajar Siswa Pada Materi Peta. Pedadidaktika. J Ilm Pendidik Guru Sekol Dasar, 2(1), 118-128. 2015;
13. Weber K (2009). Mathematics majors’ evaluation of mathematical arguments and their conception of proof. Proc 12th Conf Res Undergrad Math Educ [Internet]. 2009; Available from: http://sigmaa.maa.org/rume/ crume2009/proceedings.html
14. Moore. College students’ difficulties in learning to do mathematical proofs. Dr Diss Univ Georg Athens. 1990;
15. Mason. At.all. Thinking mathematically. Vol. 15, Early Years Educator. 2010. 24–44 p.
16. Faizah S, Nusantara T, Sudirman S, Rahardi R. Exploring students’ thinking process in mathematical proof of abstract algebra based on Mason’s framework. J Educ Gift Young Sci. 2020;8(2):871–84. DOI: https://doi.org/10.17478/jegys.689809
17. Öztürk T, Güven B. A study on pre-service mathematics teachers ’ criteria of proof evaluation. 2022; DOI: https://doi.org/10.31129/LUMAT.10.1.1649
18. Martias. LD. Statistika Deskriptif Sebagai Kumpulan Informasi. Fihris J Ilmu Perpust dan Inf. 2021;16(1):40–59. DOI: https://doi.org/10.14421/fhrs.2021.161.40-59
19. Weber.K. ). Student difficulty in constructing proofs: The need for strategic knowledge, Educational Studies in Mathematics ,48. 2001;101–119. Available from: https://link.springer.com/article/10.1023/A:1015535614355 DOI: https://doi.org/10.1023/A:1015535614355
20. de Villiers M. The role and function of proof in Mathematics. Vol. 24, Pythagoras. 1990. p. 17–23.
21. Muzangwa J, Ogbonnaya U. Visualization techniques for proofs: Implications for enhancing conceptualization and understanding in mathematical analysis. J Honai Math. 2024;7(2):347–62.
22. Kustandi C, Farhan M, Zianadezdha A, Fitri AK, L NA. Pemanfaatan Media Visual Dalam Tercapainya Tujuan Pembelajaran. Akademika. 2021;10(02):291–9. DOI: https://doi.org/10.34005/akademika.v10i02.1402
23. Arnawa IM, Musdi E. Improving Students ’ Mathematical Connections in Linear Programming through a GeoGebra-Supported Local Learning Design Based on Realistic Mathematics Education Mejorar las conexiones matemáticas de los estudiantes en programación lineal a través de un diseño de aprendizaje local respaldado por GeoGebra basado en una educación matemática realista. 2025;
24. Yerizon Y, Arnawa M, Arnellis A, Tasman F, Unp Y, Hevardani KA. Analysis of students’ errors in drawing function graphs in three-dimensional space based on APOS theory. Salud, Cienc y Tecnol. 2025;5. DOI: https://doi.org/10.56294/saludcyt20251833
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yerizon Yerizon, Dewi Murni , Elita Zusti Jamaan, I Made Arnawa, Helma Helma, Mirna Mirna (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.