Optimising Polyculture Systems for Stichopus horrens: Effects of Tilapia and Rabbitfish on Growth, Survival, and Benthic Dynamics

Authors

DOI:

https://doi.org/10.56294/saludcyt20262625

Keywords:

Stichopus horrens, integrated multi-trophic aquaculture (IMTA), rabbitfish, tilapia, detritivory, nutrient recycling, polyculture, sediment bioremediation

Abstract

Introduction: integrated multi-trophic aquaculture (IMTA) offers a sustainable alternative to monoculture by combining species with complementary trophic roles to improve nutrient recycling and environmental performance. Within this system, deposit-feeding sea cucumbers such as Stichopus horrens function as extractive organisms that convert organic wastes into biomass while contributing to sediment remediation. However, empirical evidence remains limited regarding how co-culturing S. horrens with tropical finfish influences growth, survival, and benthic conditions.
Method: a controlled tank experiment was conducted at the Kawasan Konservasi Ilmiah (KKI) Gondol, Indonesia, using twelve fibre-reinforced plastic tanks arranged in a completely randomised design. Four configurations were tested: S. horrens + tilapia (Oreochromis niloticus), S. horrens + rabbitfish (Siganus sp.), S. horrens monoculture, and a three-species assemblage. Each treatment consisted of three replicates with 15 sea cucumbers per tank. Growth performance, survival, faecal deposition, benthic community structure, and crustacean attachment were monitored throughout the culture period.
Results: survival of S. horrens remained high across treatments (≈90–98 %, interpreted as 90–98 %), indicating strong tolerance to polyculture conditions. Monoculture produced the highest final weight (84,7 ± 34,8 g), followed by rabbitfish (75,3 ± 26,3 g), tilapia (61,3 ± 18,3 g), and the three-species system (54,9 ± 14,6 g). Rabbitfish grazing suppressed algal proliferation and benthic fouling, whereas tilapia-induced sediment disturbance reduced feeding stability. Crustacean attachment was lowest in treatments containing fish, suggesting secondary biofouling control.
Conclusions: S. horrens can be effectively integrated into finfish polyculture, with ecological interactions strongly mediated by fish identity. Further research quantifying nutrient fluxes, stable-isotope assimilation, and benthic oxygen dynamics is recommended to refine stocking strategies and support system scalability.

References

1. Montgomery EM, Cannon BL, Pearce CM. Exploring Biofouling Control by the California Sea Cucumber (Apostichopus californicus) in Integrated Multi-Trophic Aquaculture (IMTA) with Organic Chinook Salmon (Oncorhynchus tshawytscha). Fishes. 2023 Aug 23;8(9):430. DOI: https://doi.org/10.3390/fishes8090430

2. Senff P, Blanc P, Slater M, Kunzmann A. Low-technology recirculating aquaculture system integrating milkfish Chanos chanos, sea cucumber Holothuria scabra and sea purslane Sesuvium portulacastrum. Aquac Environ Interact. 2020 Nov 5;12:471–84. DOI: https://doi.org/10.3354/aei00377

3. Chatzivasileiou D, Dimitriou PD, Theodorou J, Kalantzi I, Magiopoulos I, Papageorgiou N, et al. An IMTA in Greece: Co-Culture of Fish, Bivalves, and Holothurians. J Mar Sci Eng. 2022 Jun 3;10(6):776. DOI: https://doi.org/10.3390/jmse10060776

4. Cutajar K, Falconer L, Massa-Gallucci A, Cox RE, Schenke L, Bardócz T, et al. Culturing the sea cucumber Holothuria poli in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm. Aquaculture. 2022 Mar;550:737881. DOI: https://doi.org/10.1016/j.aquaculture.2021.737881

5. Chary K, Aubin J, Sadoul B, Fiandrino A, Covès D, Callier MD. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture. 2020 Feb;516:734621. DOI: https://doi.org/10.1016/j.aquaculture.2019.734621

6. Zhao W, Huang X, Deng Z, Yang R, Fang W, Wen W, et al. Growth performance, digestive and immune enzyme activities, and the environmental effects of the ivory shell, Babylonia areolata (Link 1807) in integrated Multi‐Trophic aquaculture systems. Aquac Res. 2022 Aug 7;53(11):4168–77. DOI: https://doi.org/10.1111/are.15918

7. Cutajar K, Falconer L, Sharman A, Telfer TC. Real-world waste dispersion modelling for benthic integrated multi-trophic aquaculture. PLoS One. 2024 May 23;19(5):e0303538. DOI: https://doi.org/10.1371/journal.pone.0303538

8. Sunde J, Christophersen G. Appetite in captivity - feeding studies of the red sea cucumber Parastichopus tremulus. Front Mar Sci. 2023 Jan 12;9. DOI: https://doi.org/10.3389/fmars.2022.1052968

9. Magdy M, Rampacci M, Pensa D, Grosso L, Papini G, Ventura D, et al. Evaluating the feasibility of integrated multi-trophic aquaculture (IMTA) for the sea cucumber Holothuria sanctori with finfish and shellfish. Aquaculture. 2025 Jun;604:742450. DOI: https://doi.org/10.1016/j.aquaculture.2025.742450

10. Xia B, Sun Z, Gao Q, Dong S, Li L, Wen H, et al. Uptake of farming wastes by sea cucumber Apostichopus japonicus in polyculture systems of abalone Haliotis discus hannai: evidence from C and N stable isotopes. Aquac Environ Interact. 2017 Jul 6;9:223–30.

11. Xia B, Sun Z, Gao Q, Dong S, Li L, Wen H, et al. Uptake of farming wastes by sea cucumber Apostichopus japonicus in polyculture systems of abalone Haliotis discus hannai: evidence from C and N stable isotopes. Aquac Environ Interact. 2017 Jul 6;9:223–30. DOI: https://doi.org/10.3354/aei00226

12. Yu Z, Zhou Y, Yang H, Hu C. Bottom culture of the sea cucumber Apostichopus japonicus Selenka (Echinodermata: Holothuroidea) in a fish farm, southern China. Aquac Res. 2014 Aug;45(9):1434–41. DOI: https://doi.org/10.1111/are.12089

13. Beltran-Gutierrez M, Ferse SC, Kunzmann A, Stead SM, Msuya FE, Hoffmeister TS, et al. Co-culture of sea cucumber holothuria scabra and red seaweed kappaphycus striatum. Aquac Res. 2016 May;47(5):1549–59. DOI: https://doi.org/10.1111/are.12615

14. Namukose M, Msuya F, Ferse S, Slater M, Kunzmann A. Growth performance of the sea cucumber Holothuria scabra and the seaweed Eucheuma denticulatum: integrated mariculture and effects on sediment organic characteristics. Aquac Environ Interact. 2016 Mar 30;8:179–89. DOI: https://doi.org/10.3354/aei00172

15. Hu F, Wang H, Tian R, Gao J, Wu G, Yin D, et al. A New Approach to Integrated Multi-Trophic Aquaculture System of the Sea Cucumber Apostichopus japonicus and the Sea Urchin Strongylocentrotus intermedius. J Mar Sci Eng. 2022 Dec 3;10(12):1875. DOI: https://doi.org/10.3390/jmse10121875

16. Dobson GT, Duy NDQ, Southgate PC. First assessment of the potential for coculture of sandfish Holothuria scabra with Babylon snail ( Babylonia areolata ) in Vietnam. J World Aquac Soc. 2020 Apr 12;51(2):527–41. DOI: https://doi.org/10.1111/jwas.12676

17. Yu Z, Hu C, Zhou Y, Li H, Peng P. Survival and growth of the sea cucumber H olothuria leucospilota Brandt: a comparison between suspended and bottom cultures in a subtropical fish farm during summer. Aquac Res. 2012 Dec;44(1):114–24. DOI: https://doi.org/10.1111/j.1365-2109.2011.03016.x

18. Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA, Johansen J. Role of deposit feeders in integrated multi-trophic aquaculture — A model analysis. Aquaculture. 2016 Feb;453:54–66. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.031

19. Dobson GT, Duy NDQ, Southgate PC. Preliminary assessment of large‐scale co‐culture of sandfish Holothuria scabra with the Babylon snail ( Babylonia areolata ) in earthen ponds and in raceways. J World Aquac Soc. 2021 Feb 21;52(1):138–54. DOI: https://doi.org/10.1111/jwas.12758

20. Hannah L, Pearce CM, Cross SF. Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture. 2013 Aug;406–407:34–42. DOI: https://doi.org/10.1016/j.aquaculture.2013.04.022

21. Grosso L, Rakaj A, Fianchini A, Morroni L, Cataudella S, Scardi M. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture. 2021 Mar;534:736268. DOI: https://doi.org/10.1016/j.aquaculture.2020.736268

22. Israel D, Lupatsch I, Angel DL. Testing the digestibility of seabream wastes in three candidates for integrated multi-trophic aquaculture: Grey mullet, sea urchin and sea cucumber. Aquaculture. 2019 Aug;510:364–70. DOI: https://doi.org/10.1016/j.aquaculture.2019.06.003

23. Ren JS, Stenton-Dozey J, Plew DR, Fang J, Gall M. An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecol Modell. 2012 Nov;246:34–46. DOI: https://doi.org/10.1016/j.ecolmodel.2012.07.020

24. Kong S, Chen Z, Ghonimy A, Zhao F, Li J. Effects of Penaeus japonicus stocking density on water quality and bacterial community structure in water in an integrated multi-trophic aquaculture (IMTA) system. Fisheries Science. 2024 Jan 1;90(1):75–91. DOI: https://doi.org/10.1007/s12562-023-01721-6

25. Contreras‐Sillero ME, Pacheco‐Vega JM, Valdez‐González FJ, De La Paz‐Rodríguez G, Cadena‐Roa MA, Bautista‐Covarrubias JC, et al. Polyculture of White shrimp (Penaeus vannamei) and sea cucumber (Holothuria inornata) in a biofloc system. Aquac Res. 2020 Nov 24;51(11):4410–20. DOI: https://doi.org/10.1111/are.14782

26. Alexander KA, Angel D, Freeman S, Israel D, Johansen J, Kletou D, et al. Improving sustainability of aquaculture in Europe: Stakeholder dialogues on Integrated Multi-trophic Aquaculture (IMTA). Environ Sci Policy. 2016 Jan;55:96–106. DOI: https://doi.org/10.1016/j.envsci.2015.09.006

27. Ju B, Jiang A li, Xing R lian, Chen L hong, Teng L. Optimization of conditions for an integrated multi-trophic aquaculture system consisting of sea cucumber Apostichopus japonicus and ascidian Styela clava. Aquaculture International. 2017 Feb 6;25(1):265–86. DOI: https://doi.org/10.1007/s10499-016-0027-8

Downloads

Published

2026-01-01

How to Cite

1.
Maha setiawati K, Sembiring SBM, Hutapea JH, Gunawan G, Setiadi A, Giri INA, et al. Optimising Polyculture Systems for Stichopus horrens: Effects of Tilapia and Rabbitfish on Growth, Survival, and Benthic Dynamics. Salud, Ciencia y Tecnología [Internet]. 2026 Jan. 1 [cited 2026 Jan. 18];6:2625. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2625