A Review of AI and Deep Transfer Learning Methods for Plant Disease Detection and Classification
DOI:
https://doi.org/10.56294/saludcyt20262598Keywords:
plant diseases, deep learning, transfer learning, convolutional neural networks (CNNs), disease classificationAbstract
The persistent threat of plant disease epidemics poses significant challenges to global agriculture, making crops susceptible to catastrophic diseases that compromise food security and nutritional well-being. This review critically examines the application of deep transfer learning and convolutional neural networks (CNNs) in classifying plant diseases, such as tomato leaf diseases. By synthesizing recent advancements in the field, the article highlights how pre-trained models, trained on large-scale image datasets, can be adapted to recognize disease-specific patterns in agricultural contexts. The discussion encompasses key methodologies, including the integration of custom architectures and shallow classifiers, as exemplified by works such as Fruit and Vegetable Leaf Disease Recognition based on a Novel Custom Convolutional Neural Network and Shallow Classifier and An Integrated Framework of Two-Stream Deep Learning Models Optimal Information Fusion for Fruits Disease Recognition. A critical analysis of existing approaches is provided, addressing their strengths, limitations, and the role of dataset quality and diversity in model performance, including the use of publicly available datasets of labelled plant disease images, such as PlantVillage. The review underscores the transformative potential of automation and robotics in reducing disease spread while emphasizing unresolved challenges, such as the need for cost-effective, scalable frameworks. By identifying gaps in current research and proposing future directions, this article aims to guide the development of sustainable, AI-driven solutions for agricultural productivity.
References
1. Singh, Taranjeet, Krishna Kumar, and S. S. S. Bedi. "A review on artificial intelligence techniques for disease recognition in plants." In IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, p. 012032. IOP Publishing, 2021.https://doi.org/10.1088/1757-899X/1022/1/012032. DOI: https://doi.org/10.1088/1757-899X/1022/1/012032
2. Jung, Minah, Jong Seob Song, Ah-Young Shin, Beomjo Choi, Sangjin Go, Suk-Yoon Kwon, Juhan Park, Sung Goo Park, and Yong-Min Kim. "Construction of deep learning-based disease detection model in plants." Scientific reports 13, no. 1 (2023): 7331.
https://doi.org/10.1038/s41598-023-34549-2. DOI: https://doi.org/10.1038/s41598-023-34549-2
3. Oliveira, Rosana Cavalcante de, and Rogério Diogne de Souza E. Silva. "Artificial intelligence in agriculture: benefits, challenges, and trends." Applied Sciences 13, no. 13 (2023): 7405. https://doi.org/10.3390/app13137405. DOI: https://doi.org/10.3390/app13137405
4. U. Zahra, M. A. Khan, M. Alhaisoni, A. Alasiry, M. Marzougui, and A. Masood, “An Integrated Framework of Two-Stream Deep Learning Models Optimal Information Fusion for Fruits Disease Recognition,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, pp. 3038–3052, 2024, https;//doi.org/10.1109/JSTARS.2023.3339297. DOI: https://doi.org/10.1109/JSTARS.2023.3339297
5. S. A. F. Naqvi et al., “Fruit and vegetable leaf disease recognition based on a novel custom convolutional neural network and shallow classifier,” Front. Plant Sci., vol. 15, Sep. 2024, https;//doi.org/10.3389/fpls.2024.1469685. DOI: https://doi.org/10.3389/fpls.2024.1469685
6. Mkonyi, Lilian. "Development of model for early identification of tomato plant damages caused by TUTA ABSOLUTA." PhD diss., NM-AIST, 2021. https://doi.org/10.58694/20.500.12479/1345. DOI: https://doi.org/10.58694/20.500.12479/1345
7. Seth, Vishal, Rajeev Paulus, and Anil Kumar. "Tomato leaf diseases detection using deep learning—a review." Intelligent Systems and Smart Infrastructure (2023): 118-131. https://doi.org/10.1201/9781003357346-14. DOI: https://doi.org/10.1201/9781003357346-14
8. Gu, Jiuxiang, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu et al. "Recent advances in convolutional neural networks." Pattern recognition 77 (2018): 354-377.[Online]. Available: http://arxiv.org/abs/1512.07108 DOI: https://doi.org/10.1016/j.patcog.2017.10.013
9. Yamashita, Rikiya, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. "Convolutional neural networks: an overview and application in radiology." Insights into imaging 9 (2018): 611-629. https://doi.org/10.1007/s13244-018-0639-9. DOI: https://doi.org/10.1007/s13244-018-0639-9
10. Halbouni, Asmaa, Teddy Surya Gunawan, Mohamed Hadi Habaebi, Murad Halbouni, Mira Kartiwi, and Robiah Ahmad. "CNN-LSTM: hybrid deep neural network for network intrusion detection system." IEEE Access 10 (2022): 99837-99849. https://doi.org/10.1109/ACCESS.2022.3206425. DOI: https://doi.org/10.1109/ACCESS.2022.3206425
11. Wang, Nan, Mingyue Cheng, and Kang Ning. "Overcoming regional limitations: transfer learning for cross-regional microbial-based diagnosis of diseases." Gut 72, no. 10 (2023): 2004-2006. https://doi.org/10.1136/gutjnl-2022-328216. DOI: https://doi.org/10.1136/gutjnl-2022-328216
12. Corceiro, Ana, Khadijeh Alibabaei, Eduardo Assunção, Pedro D. Gaspar, and Nuno Pereira. "Methods for detecting and classifying weeds, diseases and fruits using AI to improve the sustainability of agricultural crops: a review." Processes 11, no. 4 (2023): 1263. https://doi.org/10.3390/pr11041263. DOI: https://doi.org/10.3390/pr11041263
13. Xu, Zheng, and Cong Wu. "Combination of Transfer Deep Learning and Classical Machine Learning Models for Multi-View Image Analysis." In Computer Sciences & Mathematics Forum, vol. 7, no. 1, p. 13. MDPI, 2023. https://doi.org/10.3390/iocma2023-14401. DOI: https://doi.org/10.3390/IOCMA2023-14401
14. B. Casella, A. Chisari, S. Battiato, and M. Giuffrida, “Transfer Learning via Test-time Neural Networks Aggregation:,” in Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications, 2022, pp. 642–649. https://doi.org/10.5220/0010907900003124. DOI: https://doi.org/10.5220/0010907900003124
15. N. K. E, K. M, P. P, A. R, and V. S, “Tomato Leaf Disease Detection using Convolutional Neural Network with Data Augmentation,” in 2020 5th International Conference on Communication and Electronics Systems (ICCES), COIMBATORE, India: IEEE, Jun. 2020, pp. 1125–1132.https://doi.org/10.1109/ICCES48766.2020.09138030. DOI: https://doi.org/10.1109/ICCES48766.2020.9138030
16. Ashok, Surampalli, Gemini Kishore, Velpula Rajesh, S. Suchitra, SG Gino Sophia, and B. Pavithra. "Tomato leaf disease detection using deep learning techniques." In 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 979-983. IEEE, 2020. https://doi.org/10.1109/ICCES48766.2020.9137986. DOI: https://doi.org/10.1109/ICCES48766.2020.9137986
17. Magsi, Aurangzeb, Javed Ahmed Mahar, Mirza Abdur Razzaq, and Sajid Habib Gill. "Date palm disease identification using features extraction and deep learning approach." In 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1-6. IEEE, 2020. https://doi.org/10.1109/INMIC50486.2020.9318158. DOI: https://doi.org/10.1109/INMIC50486.2020.9318158
18. Jiang, Peng, Yuehan Chen, Bin Liu, Dongjian He, and Chunquan Liang. "Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks." Ieee Access 7 (2019): 59069-59080. https://doi.org/10.1109/ACCESS.2019.2914929. DOI: https://doi.org/10.1109/ACCESS.2019.2914929
19. Wang, Qimei, Feng Qi, Minghe Sun, Jianhua Qu, and Jie Xue. "Identification of tomato disease types and detection of infected areas based on deep convolutional neural networks and object detection techniques." Computational intelligence and neuroscience 2019, no. 1 (2019): 9142753. https://doi.org/10.1155/2019/9142753. DOI: https://doi.org/10.1155/2019/9142753
20. Kumar, Akshay, and M. Vani. "Image based tomato leaf disease detection." In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-6. IEEE, 2019. https://doi.org/10.1109/ICCCNT45670.2019.8944692. DOI: https://doi.org/10.1109/ICCCNT45670.2019.8944692
21. Ozguven, Mehmet Metin, and Kemal Adem. "Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms." Physica A: statistical mechanics and its applications 535 (2019): 122537. https://doi.org/10.1016/j.physa.2019.122537. DOI: https://doi.org/10.1016/j.physa.2019.122537
22. Karthik, R., M. Hariharan, Sundar Anand, Priyanka Mathikshara, Annie Johnson, and R. Menaka. "Attention embedded residual CNN for disease detection in tomato leaves." Applied Soft Computing 86 (2020): 105933. https://doi.org/10.1016/j.asoc.2019.105933. DOI: https://doi.org/10.1016/j.asoc.2019.105933
23. Salih, Thair A. "Deep learning convolution neural network to detect and classify tomato plant leaf diseases." Open Access Library Journal 7, no. 05 (2020): 1. https://doi.org/10.4236/oalib.1106296. DOI: https://doi.org/10.4236/oalib.1106296
24. Zhang, Yang, Chenglong Song, and Dongwen Zhang. "Deep learning-based object detection improvement for tomato disease." IEEE access 8 (2020): 56607-56614. https://doi.org/10.1109/ACCESS.2020.2982456. DOI: https://doi.org/10.1109/ACCESS.2020.2982456
25. Gangwar, Nitish, Divyansh Tiwari, Abhishek Sharma, Mritunjay Ashish, and Ankush Mittal. "Grape leaf disease classification using transfer learning." International Research Journal of Engineering and Technology (IRJET) (2020). [Online]. Available: www.irjet.net
26. Vallabhajosyula, Sasikala, Venkatramaphanikumar Sistla, and Venkata Krishna Kishore Kolli. "Transfer learning-based deep ensemble neural network for plant leaf disease detection." Journal of Plant Diseases and Protection 129, no. 3 (2022): 545-558. https://doi.org/10.1007/s41348-021-00465-8. DOI: https://doi.org/10.1007/s41348-021-00465-8
27. Aversano, Lerina, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, and Stefano Rondinella. "Tomato diseases classification based on VGG and transfer learning." In 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pp. 129-133. IEEE, 2020. https://doi.org/10.1109/MetroAgriFor50201.2020.9277626. DOI: https://doi.org/10.1109/MetroAgriFor50201.2020.9277626
28. Saleem, Muhammad Hammad, Johan Potgieter, and Khalid Mahmood Arif. "Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers." Plants 9, no. 10 (2020): 1319. https://doi.org/10.3390/plants9101319. DOI: https://doi.org/10.3390/plants9101319
29. Nawaz, Marriam, Tahira Nazir, Ali Javed, Momina Masood, Junaid Rashid, Jungeun Kim, and Amir Hussain. "A robust deep learning approach for tomato plant leaf disease localization and classification." Scientific reports 12, no. 1 (2022): 18568. https://doi.org/10.1038/s41598-022-21498-5. DOI: https://doi.org/10.1038/s41598-022-21498-5
30. Agarwal, Mohit, Abhishek Singh, Siddhartha Arjaria, Amit Sinha, and Suneet Gupta. "ToLeD: Tomato leaf disease detection using convolution neural network." Procedia Computer Science 167 (2020): 293-301. https://doi.org/10.1016/j.procs.2020.03.225. DOI: https://doi.org/10.1016/j.procs.2020.03.225
31. Jeyalakshmi, S., and R. Radha. "CLASSIFICATION OF TOMATO DISEASES USING ENSEMBLE LEARNING." ICTACT Journal on Soft Computing 11, no. 4 (2021). https://doi.org/10.21917/ijsc.2021.0343. DOI: https://doi.org/10.21917/ijsc.2021.0343
32. Kibriya, Hareem, Rimsha Rafique, Wakeel Ahmad, and S. M. Adnan. "Tomato leaf disease detection using convolution neural network." In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), pp. 346-351. IEEE, 2021. https://doi.org/10.1109/IBCAST51254.2021.9393311. DOI: https://doi.org/10.1109/IBCAST51254.2021.9393311
33. Parvez, Shamima, Md Ashraf Uddin, Md Manowarul Islam, Pallab Bharman, and Md Alamin Talukder. "Tomato leaf disease detection using convolutional neural network." (2023). https://doi.org/10.21203/rs.3.rs-3505828/v1. DOI: https://doi.org/10.21203/rs.3.rs-3505828/v1
34. Nagamani, H. S., and H. Sarojadevi. "Tomato leaf disease detection using deep learning techniques." International Journal of Advanced Computer Science and Applications 13, no. 1 (2022). https://doi.org/10.14569/IJACSA.2022.0130138. DOI: https://doi.org/10.14569/IJACSA.2022.0130138
35. Al‐gaashani, Mehdhar SAM, Fengjun Shang, Mohammed SA Muthanna, Mashael Khayyat, and Ahmed A. Abd El‐Latif. "Tomato leaf disease classification by exploiting transfer learning and feature concatenation." IET Image Processing 16, no. 3 (2022): 913-925. https://doi.org/10.1049/ipr2.12397. DOI: https://doi.org/10.1049/ipr2.12397
36. Lakshmanarao, A., N. Supriya, and A. Arulmurugan. "Plant disease prediction using transfer learning techniques." In 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), pp. 1-5. IEEE, 2022. https://doi.org/10.1109/ICAECT54875.2022.9807956. DOI: https://doi.org/10.1109/ICAECT54875.2022.9807956
37. Attallah, Omneya. "Tomato leaf disease classification via compact convolutional neural networks with transfer learning and feature selection." Horticulturae 9, no. 2 (2023): 149. https://doi.org/10.3390/horticulturae9020149. DOI: https://doi.org/10.3390/horticulturae9020149
38. Borugadda, Premkumar, Ramasami Lakshmi, and Satyasangram Sahoo. "Transfer Learning VGG16 Model for Classification of Tomato Plant Leaf Diseases: A Novel Approach for Multi-Level Dimensional Reduction." Pertanika Journal of Science & Technology 31, no. 2 (2023). https://doi.org/10.47836/pjst.31.2.09. DOI: https://doi.org/10.47836/pjst.31.2.09
39. Kaur, Prabhjot, Shilpi Harnal, Vinay Gautam, Mukund Pratap Singh, and Santar Pal Singh. "A novel transfer deep learning method for detection and classification of plant leaf disease." Journal of Ambient Intelligence and Humanized Computing 14, no. 9 (2023): 12407-12424. https://doi.org/10.1007/s12652-022-04331-9. DOI: https://doi.org/10.1007/s12652-022-04331-9
40. Liu, Guangsheng, Jialiang Peng, and Ahmed A. Abd El-Latif. "SK-MobileNet: a lightweight adaptive network based on complex deep transfer learning for plant disease recognition." Arabian journal for science and engineering 48, no. 2 (2023): 1661-1675. https://doi.org/10.1007/s13369-022-06987-z. DOI: https://doi.org/10.1007/s13369-022-06987-z
41. Nayak, Anshuman, Somsubhra Chakraborty, and Dillip Kumar Swain. "Application of smartphone-image processing and transfer learning for rice disease and nutrient deficiency detection." Smart Agricultural Technology 4 (2023): 100195. https://doi.org/10.1016/j.atech.2023.100195. DOI: https://doi.org/10.1016/j.atech.2023.100195
42. Nigam, Sapna, Rajni Jain, Sudeep Marwaha, Alka Arora, Md Ashraful Haque, Akshay Dheeraj, and Vaibhav Kumar Singh. "Deep transfer learning model for disease identification in wheat crop." Ecological Informatics 75 (2023): 102068. https://doi.org/10.1016/j.ecoinf.2023.102068. DOI: https://doi.org/10.1016/j.ecoinf.2023.102068
43. Jiang, Han, Zhi Peng Xue, and Yan Guo. "Research on plant leaf disease identification based on transfer learning algorithm." In Journal of Physics: Conference Series, vol. 1576, no. 1, p. 012023. IOP Publishing, 2020.https://doi.org/10.1088/1742-6596/1576/1/012023. DOI: https://doi.org/10.1088/1742-6596/1576/1/012023
44. El Massi, Ismail, Youssef Es-saady, Mostafa El Yassa, and Driss Mammass. "Combination of multiple classifiers for automatic recognition of diseases and damages on plant leaves." Signal, Image and Video Processing 15 (2021): 789-796.https://doi.org/10.1007/s11760-020-01797-y. DOI: https://doi.org/10.1007/s11760-020-01797-y
45. Marino, Sofia, Pierre Beauseroy, and André Smolarz. "Deep Learning-based Method for Classifying and Localizing Potato Blemishes." ICPRAM 11996, no. 1 (2019): 107-117.https://doi.org/10.5220/0007350101070117. DOI: https://doi.org/10.5220/0007350101070117
46. Thotho, Doreen, and Paul Macheso. "Comprehensive Survey on Applications of Internet of Things, Machine Learning and Artificial Intelligence in Precision Agriculture." Tanzania Journal of Engineering and Technology 42, no. 4 (2023): 30-45.https://doi.org/10.52339/tjet.v42i4.922. DOI: https://doi.org/10.52339/tjet.v42i4.922
47. Mohy-eddine, Mouaad, Azidine Guezzaz, Said Benkirane, and Mourade Azrour. "IoT-enabled smart agriculture: security issues and applications." In The International Conference on Artificial Intelligence and Smart Environment, pp. 566-571. Cham: Springer International Publishing, 2023.https://doi.org/10.1007/978-3-031-26254-8_82. DOI: https://doi.org/10.1007/978-3-031-26254-8_82
48. S. K. Javheri, “AGRICULTURE AND ARTIFICIAL INTELLIGENCE: A NEW RESEARCH ERA”,https://doi.org/10.56726/IRJMETS45733.
49. Mukti, Ishrat Zahan, and Dipayan Biswas. "Transfer learning based plant diseases detection using ResNet50." In 2019 4th International conference on electrical information and communication technology (EICT), pp. 1-6. IEEE, 2019.https://doi.org/10.1109/EICT48899.2019.9068805. DOI: https://doi.org/10.1109/EICT48899.2019.9068805
50. Militante, Sammy V., Bobby D. Gerardo, and Nanette V. Dionisio. "Plant leaf detection and disease recognition using deep learning." In 2019 IEEE Eurasia conference on IOT, communication and engineering (ECICE), pp. 579-582. IEEE, 2019.https://doi.org/10.1109/ECICE47484.2019.8942686. DOI: https://doi.org/10.1109/ECICE47484.2019.8942686
51. Hasan, Mosin, Bhavesh Tanawala, and Krina J. Patel. "Deep learning precision farming: Tomato leaf disease detection by transfer learning." In Proceedings of 2nd international conference on advanced computing and software engineering (ICACSE). 2019.https://doi.org/10.2139/ssrn.3349597. DOI: https://doi.org/10.2139/ssrn.3349597
52. Francis, Mercelin, and C. Deisy. "Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding." In 2019 6th international conference on signal processing and integrated networks (SPIN), pp. 1063-1068. IEEE, 2019. https://doi.org/10.1109/SPIN.2019.8711701. DOI: https://doi.org/10.1109/SPIN.2019.8711701
53. Jakjoud, F., A. Hatim, and A. Bouaddi. "Detection of diseases on tomato leaves based on Sub–Classifiers Fuzzy Combination." International Journal of innovative Technology and Exploring Engineering (IJITEE), ISSN (2019): 2278-3075.
54. Coulibaly, Solemane, Bernard Kamsu-Foguem, Dantouma Kamissoko, and Daouda Traore. "Deep neural networks with transfer learning in millet crop images." Computers in industry 108 (2019): 115-120. https://doi.org/10.1016/j.compind.2019.02.003ï. DOI: https://doi.org/10.1016/j.compind.2019.02.003
55. Zhang, Tao, Xiankun Zhu, Yiqing Liu, Kun Zhang, and Azhar Imran. "Deep learning based classification for tomato diseases recognition." In IOP Conference Series: Earth and Environmental Science, vol. 474, no. 3, p. 032014. IOP Publishing, 2020. https://doi.org/10.1088/1755-1315/474/3/032014. DOI: https://doi.org/10.1088/1755-1315/474/3/032014
56. Mathulaprangsan, Seksan, et al. "Rice diseases recognition using effective deep learning models." 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON). IEEE, 2020.https://doi.org/10.1109/ECTIDAMTNCON48261.2020.9090709. DOI: https://doi.org/10.1109/ECTIDAMTNCON48261.2020.9090709
57. Ouhami, Maryam, Youssef Es-Saady, Mohamed El Hajji, Adel Hafiane, Raphael Canals, and Mostafa El Yassa. "Deep transfer learning models for tomato disease detection." In Image and Signal Processing: 9th International Conference, ICISP 2020, Marrakesh, Morocco, June 4–6, 2020, Proceedings 9, pp. 65-73. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-51935-3_7. DOI: https://doi.org/10.1007/978-3-030-51935-3_7
58. Chen, Junde, Jinxiu Chen, Defu Zhang, Yuandong Sun, and Yaser Ahangari Nanehkaran. "Using deep transfer learning for image-based plant disease identification." Computers and Electronics in Agriculture 173 (2020): 105393.https://doi.org/10.1016/j.compag.2020.105393. DOI: https://doi.org/10.1016/j.compag.2020.105393
59. Chen, Junde, Defu Zhang, Yaser A. Nanehkaran, and Dele Li. "Detection of rice plant diseases based on deep transfer learning." Journal of the Science of Food and Agriculture 100, no. 7 (2020): 3246-3256.https://doi.org/10.1002/jsfa.10365. DOI: https://doi.org/10.1002/jsfa.10365
60. Rosmala, D., MR Prakha Anggara, and J. P. Sahat. "Transfer learning with vgg16 and inceptionv3 model for classification of potato leaf disease." Journal of Theoretical and Applied Information Technology 99, no. 2 (2021): 279-292.[Online].Available: https://www.jatit.org.
61. Wagle, S.A., 2021. A Deep Learning-Based Approach in Classification and Validation of Tomato Leaf Disease. Traitement du signal, 38(3).https://doi.org/10.18280/ts.380317. DOI: https://doi.org/10.18280/ts.380317
62. Ashwinkumar, S., S. Rajagopal, V. Manimaran, and B. Jegajothi. "Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks." Materials Today: Proceedings 51 (2022): 480-487. https://doi.org/10.1016/j.matpr.2021.05.584. DOI: https://doi.org/10.1016/j.matpr.2021.05.584
63. Wagle, Shivali Amit, Jahariah Sampe, Faseehuddin Mohammad, and Sawal Hamid Md Ali. "Effect of Data Augmentation in the Classification and Validation of Tomato Plant Disease with Deep Learning Methods."TraitementduSignal 38,no.6(2021).https://doi.org/10.18280/ts.380609. DOI: https://doi.org/10.18280/ts.380609
64. Hassan, Rondik J., and Adnan Mohsin Abdulazeez. "Plant Leaf Disease Detection by Using Different Classification Techniques: Comparative." Asian Journal of Research in Computer Science 8, no. 4 (2021): 1-11.https://doi.org/10.9734/ajrcos/2021/v8i430205. DOI: https://doi.org/10.9734/ajrcos/2021/v8i430205
65. Abbas, Amreen, Sweta Jain, Mahesh Gour, and Swetha Vankudothu. "Tomato plant disease detection using transfer learning with C-GAN synthetic images." Computers and Electronics in Agriculture 187 (2021): 106279.https://doi.org/10.1016/j.compag.2021.106279. DOI: https://doi.org/10.1016/j.compag.2021.106279
66. Chowdhury, Muhammad EH, Tawsifur Rahman, Amith Khandakar, Nabil Ibtehaz, Aftab Ullah Khan, Muhammad Salman Khan, Nasser Al-Emadi, Mamun Bin Ibne Reaz, Mohammad Tariqul Islam, and Sawal Hamid Md Ali. "Tomato leaf diseases detection using deep learning technique." Technology in Agriculture 453 (2021).https://doi.org/10.5772/intechopen.97319. DOI: https://doi.org/10.5772/intechopen.97319
67. Wang, Xuewei, and Jun Liu. "Tomato anomalies detection in greenhouse scenarios based on YOLO-Dense." Frontiers in Plant Science 12 (2021): 634103.https://doi.org/10.3389/fpls.2021.634103. DOI: https://doi.org/10.3389/fpls.2021.634103
68. Feng, Lei, Baohua Wu, Yong He, and Chu Zhang. "Hyperspectral imaging combined with deep transfer learning for rice disease detection." Frontiers in Plant Science 12 (2021): 693521. https://doi.org/10.3389/fpls.2021.693521. DOI: https://doi.org/10.3389/fpls.2021.693521
69. Khasawneh, Natheer, Esraa Faouri, and Mohammad Fraiwan. "Automatic detection of tomato diseases using deep transfer learning." Applied Sciences 12, no. 17 (2022): 8467. https://doi.org/10.3390/app12178467. DOI: https://doi.org/10.3390/app12178467
70. Ahmed, Sabbir, Md Bakhtiar Hasan, Tasnim Ahmed, Md Redwan Karim Sony, and Md Hasanul Kabir. "Less is more: Lighter and faster deep neural architecture for tomato leaf disease classification." IEEE Access 10 (2022): 68868-68884. https://doi.org/10.1109/ACCESS.2022.3187203. DOI: https://doi.org/10.1109/ACCESS.2022.3187203
71. Nguyen, Thanh-Hai, Thanh-Nghia Nguyen, and Ba-Viet Ngo. "A VGG-19 model with transfer learning and image segmentation for classification of tomato leaf disease." AgriEngineering 4, no. 4 (2022): 871-887. https://doi.org/10.3390/agriengineering4040056. DOI: https://doi.org/10.3390/agriengineering4040056
72.Al-Akkam, Reem Mohammed Jasim, and Mohammed Sahib Mahdi Altaei. "Plants leaf diseases detection using deep learning." Iraqi JournalofScience (2022):801816.https://doi.org/10.24996/ijs.2022.63.2.34. DOI: https://doi.org/10.24996/ijs.2022.63.2.34
73. Boutalline, Mohammed, Adil Tannouche, Hassan Faouzi, Hamid Ouanan, and Malak Dargham. "Automatic Detection and Classification of Apple Leaves Diseases Using MobileNet V2." Revue d'Intelligence Artificielle 36, no. 5 (2022): 745.https://doi.org/10.18280/ria.360512. DOI: https://doi.org/10.18280/ria.360512
74. Zhang, Liangji, Guoxiong Zhou, Chao Lu, Aibin Chen, Yanfeng Wang, Liujun Li, and Weiwei Cai. "MMDGAN: A fusion data augmentation method for tomato-leaf disease identification." Applied Soft Computing 123(2022):108969.https://doi.org/10.1016/j.asoc.2022.108969. DOI: https://doi.org/10.1016/j.asoc.2022.108969
75. Hajraoui, Noredine, Mourade Azrour, and Ahmad El Allaoui. "Classification of diseases in tomato leaves with Deep Transfer Learning." In The International Conference on Artificial Intelligence and Smart Environment, pp. 607-612. Cham: Springer Nature Switzerland, 2023.https://doi.org/10.56294/dm2023181. DOI: https://doi.org/10.1007/978-3-031-48573-2_86
76. Hessane, Abdelaaziz, Ahmed El Youssefi, Yousef Farhaoui, Badraddine Aghoutane, and Fatima Amounas. "A machine learning based framework for a stage-wise classification of date palm white scale disease." Big Data Mining and Analytics 6, no. 3 (2023): 263-272.https://doi.org/10.26599/BDMA.2022.9020022. DOI: https://doi.org/10.26599/BDMA.2022.9020022
77. Ur Rehman, Muhammad Zia, Fawad Ahmed, Muhammad Attique Khan, Usman Tariq, Sajjad Shaukat Jamal, Jawad Ahmad, and Iqtadar Hussain. "Classification of Citrus Plant Diseases Using Deep Transfer Learning." Computers, Materials & Continua 70, no. 1 (2022). https://doi.org/10.32604/cmc.2022.019046. DOI: https://doi.org/10.32604/cmc.2022.019046
78. Bensaadi, Soumia, and Ahmed Louchene. "Low-cost convolutional neural network for tomato plant diseases classifiation." IAES International Journal of Artificial Intelligence 12, no. 1 (2023): 162. https://doi.org/10.11591/ijai.v12.i1.pp162-170. DOI: https://doi.org/10.11591/ijai.v12.i1.pp162-170
79. Isnan, Mahmud, Alam Ahmad Hidayat, and Bens Pardamean. "Indonesian agricultural-crops classification using transfer learning model." Procedia Computer Science 227 (2023): 128-136. https://doi.org/10.1016/j.procs.2023.10.510. DOI: https://doi.org/10.1016/j.procs.2023.10.510
80. Ramya, R., and P. Kumar. "High-performance deep transfer learning model with batch normalization based on multiscale feature fusion for tomato plant disease identification and categorization." Environmental Research Communications 5, no. 12 (2023): 125015. https://doi.org/10.1088/2515-7620/ace594. DOI: https://doi.org/10.1088/2515-7620/ace594
81. Shahoveisi, F., Taheri Gorji, H., Shahabi, S., Hosseinirad, S., Markell, S. and Vasefi, F., 2023. Application of image processing and transfer learning for the detection of rust disease. Scientific Reports, 13(1), p.5133. https://doi.org/10.1038/s41598-023-31942-9. DOI: https://doi.org/10.1038/s41598-023-31942-9
82. Mimi, Afsana, Sayeda Fatema Tuj Zohura, Muhammad Ibrahim, Riddho Ridwanul Haque, Omar Farrok, Taskeed Jabid, and Md Sawkat Ali. "Identifying selected diseases of leaves using deep learning and transfer learning models." Machine Graphics & Vision 32, no. 1 (2023). https://doi.org/10.22630/MGV.2023.32.1.3. DOI: https://doi.org/10.22630/MGV.2023.32.1.3
83. H. M. Zayani et al.,“Deep Learning for Tomato Disease Detection with YOLOv8,” Eng. Technol.Appl.Sci.Res.,vol.14,no.2,pp.13584–13591,Apr.2024, https://doi.org/10.48084/etasr.7064. DOI: https://doi.org/10.48084/etasr.7064
84. M. S. A. M. Al-Gaashani et al., “Deep transfer learning with gravitational search algorithm for enhanced plant disease classification,” Heliyon, vol. 10, no. 7, p. e28967, Apr. 2024, https://doi.org/10.1016/j.heliyon.2024.e28967. DOI: https://doi.org/10.1016/j.heliyon.2024.e28967
85. Abdul Aziz, Abdul Fadlil, and Tole Sutikno, “Optimization of Convolutional Neural Network (CNN) Using Transfer Learning for Disease Identification in Rice Leaf Images,” J. E-Komtek Elektro-Komput.-Tek.,vol.8,no.2,pp. 504–515, Dec. 2024, https://doi.org/10.37339/e-komtek.v8i2.2132. DOI: https://doi.org/10.37339/e-komtek.v8i2.2132
86. W. Shafik, A. Tufail, C. De Silva Liyanage, and R. A. A. H. M. Apong, “Using transfer learning-based plant disease classification and detection for sustainable agriculture,” BMC Plant Biol., vol. 24, no. 1, p. 136, Feb. 2024, https://doi.org/10.1186/s12870-024-04825-y. DOI: https://doi.org/10.1186/s12870-024-04825-y
87. Y. A. Bezabh, A. M. Ayalew, B. M. Abuhayi, T. N. Demlie, E. A. Awoke, and T. E. Mengistu, “Classification of mango disease using ensemble convolutional neural network,” Smart Agric. Technol., vol. 8, p. 100476, Aug. 2024, https://doi.org/10.1016/j.atech.2024.100476. DOI: https://doi.org/10.1016/j.atech.2024.100476
88. R. Gai, Y. Liu, and G. Xu, “TL-YOLOv8: A Blueberry Fruit Detection Algorithm Based on Improved YOLOv8 and Transfer Learning,” IEEE Access, vol. 12, pp. 86378–86390, 2024, https://doi.org/10.1109/ACCESS.2024.3416332. DOI: https://doi.org/10.1109/ACCESS.2024.3416332
89. P. Buchke and A. V. R. Mayuri, “Recognize and classify illnesses on tomato leaves using EfficientNet’s transfer learning approach with different size dataset,” Signal Image Video Process., vol. 18, no. Suppl 1, pp. 731–746, 2024, https://doi.org/10.1007/s11760-024-03188-z. DOI: https://doi.org/10.1007/s11760-024-03188-z
90. H.-T. Vo, K. C. Mui, N. N. Thien, P. P. Tien, and H. L. Le, “Optimizing Grape Leaf Disease Identification Through Transfer Learning and Hyperparameter Tuning,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 2, 2024, https://doi.org/10.14569/IJACSA.2024.0150293. DOI: https://doi.org/10.14569/IJACSA.2024.0150293
91. D. Han and C. Guo, “Automatic classification of ligneous leaf diseases via hierarchical vision transformer and transfer learning,” Front. Plant Sci., vol. 14, p. 1328952, Jan. 2024, https://doi.org./10.3389/fpls.2023.1328952. DOI: https://doi.org/10.3389/fpls.2023.1328952
92. P. Radočaj, D. Radočaj, and G. Martinović, “Image-Based Leaf Disease Recognition Using Transfer Deep Learning with a Novel Versatile Optimization Module,” Big Data Cogn. Comput., vol. 8, no. 6, 2024, https://doi.org./10.3390/bdcc8060052. DOI: https://doi.org/10.3390/bdcc8060052
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Noredine Hajraoui, Mourade Azrour, Yousef Farhaoui, Ahmad El Allaoui (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.