QBD Driven Approach Design and Optimization of Lipid-Based Nanoformulation of Cannabidiol for Enhanced Treatment of Non-Melanoma Skin Cancer

Authors

  • Mohammed F. Aldawsari Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia Author https://orcid.org/0000-0003-1298-4863
  • Md. Khalid Anwer Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, AlKharj 11942, Saudi Arabia Author https://orcid.org/0000-0002-5227-3954

DOI:

https://doi.org/10.56294/saludcyt20262523

Keywords:

Skin Cancer, Cannabidiol, Topical Route, NLC, A375 human skin cancer cell lines

Abstract

Introduction: The non-melanoma skin cancer (NMSC) is a very commonly detected malignancy globally, contributing significantly to patient morbidity and placing a substantial burden on healthcare systems. Objective: This study aims to develop a stable cannabidiol (CBD)-incorporated nanostructured lipid carrier (NLC) for treating the non-melanoma skin cancer. Methods: In the current study, we report the design, development and characterization of a cannabidiol (CBD)-incorporated nanostructured lipid carrier (NLC) gel formulation (CBD loaded NLC gel), a novel topical therapeutic approach for treating the NMSC. The optimization of the NLC was effectively carried out using a central composite design (CCD), which enabled the systematic evaluation of formulation variables and their impact on key physicochemical parameters. Results: The final optimized CBD-NLC formulation exhibited mean particle size of 154.7 nm and a zeta potential of +30.12 mV, indicating good stability and potential for effective skin interaction. The cumulative drug release and skin permeation studies using Wistar rat skin demonstrated enhanced and sustained delivery of CBD into the epidermal and dermal layers, facilitated by the lipid-based nanocarrier system. Further, the cytotoxic ability of the CBD Loaded NLC formulation was evaluated using A375 human melanoma cells. The MTT assay revealed a significantly lower IC₅₀ value of 3.07 µg/mL for the CBD loaded NLC gel compared to conventional formulations, indicating improved anticancer activity. Conclusion: Cannabidiol (CBD)-incorporated nanostructured lipid carrier (NLC) gel formulation exhibited suitable release, skin permeation and cytotoxic potential for the treatment the non-melanoma skin cancer.

References

1. Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH. Skin cancer : understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer. 2023;1–70. https://doi.org/10.1186/s12943-023-01854-3 DOI: https://doi.org/10.1186/s12943-023-01854-3

2. Sol S, Boncimino F, Todorova K, Waszyn SE, Mandinova A. Therapeutic Approaches for Non-Melanoma Skin Cancer: Standard of Care and Emerging Modalities. Int J Mol Sci. 2024;25. DOI: https://doi.org/10.3390/ijms25137056

3. Lalan M, Shah P, Barve K, Parekh K, Mehta T, Patel P. Skin cancer therapeutics: nano-drug delivery vectors—present and beyond. Futur J Pharm Sci. 2021;7. https://doi.org/10.1186/s43094-021-00326-z DOI: https://doi.org/10.1186/s43094-021-00326-z

4. Gupta A, Deep Kau C. Comparative Evaluation of Two Different Novel Formulations of Quercetin Against Non Melanoma Skin Cancer in Human Subjects. J Clin Exp Dermatol Res. 2016;07:3–7. DOI: https://doi.org/10.4172/2155-9554.1000346

5. Nanz L, Keim U, Katalinic A, Meyer T, Garbe C, Leiter U. Epidemiology of Keratinocyte Skin Cancer with a Focus on Cutaneous Squamous Cell Carcinoma. Cancers (Basel). 2024;16:1–12. DOI: https://doi.org/10.3390/cancers16030606

6. Ellithy MMA, Abdrabo RAM. Plant Based Extract Oil-Based Nano emulsions: Impact on Human Melanoma Cell Line. Asian Pac J Cancer Prev. 2024;25:1663–71. DOI: https://doi.org/10.31557/APJCP.2024.25.5.1663

7. Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Perry MJ, et al. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm. 2023;640:123011. https://doi.org/10.1016/j.ijpharm.2023.123011 DOI: https://doi.org/10.1016/j.ijpharm.2023.123011

8. Ferreira BP, Costa G, Mascarenhas-Melo F, Pires PC, Heidarizadeh F, Giram PS, et al. Skin applications of cannabidiol: sources, effects, delivery systems, marketed formulations and safety. Phytochem. Rev. 2023. DOI: https://doi.org/10.1007/s11101-023-09860-5

9. Kesavan Pillai S, Hassan Kera N, Kleyi P, de Beer M, Magwaza M, Ray SS. Stability, biofunctional, and antimicrobial characteristics of cannabidiol isolate for the design of topical formulations. Soft Matter. 2024;20:2348–60. DOI: https://doi.org/10.1039/D3SM01466E

10. Josiah AJ, Pillai SK, Cordier W, Nell M, Twilley D, Lall N, et al. Cannabidiol-Mediated Green Synthesis, Characterization, and Cytotoxicity of Metal Nanoparticles in Human Keratinocyte Cells. ACS Omega. 2021;6:29078–90. DOI: https://doi.org/10.1021/acsomega.1c04303

11. Morakul B, Junyaprasert VB, Sakchaisri K, Teeranachaideekul V. Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity. Pharmaceutics. 2023;15. DOI: https://doi.org/10.3390/pharmaceutics15020537

12. Silva G. Co-delivery of Paclitaxel and Cannabidiol in Lipid Nanoparticles Enhances Cytotoxicity Against Melanoma Cells. 2024;

13. Taha IE, ElSohly MA, Radwan MM, Elkanayati RM, Wanas A, Joshi PH, et al. Enhancement of cannabidiol oral bioavailability through the development of nanostructured lipid carriers: In vitro and in vivo evaluation studies. Drug Deliv Transl Res. 2025. https://doi.org/10.1007/s13346-024-01766-9 DOI: https://doi.org/10.1007/s13346-024-01766-9

14. Adel Ali Youssef A, Hayder Abdelrahman M, Geweda MM, Varner C, Joshi PH, Ghonge M, et al. Formulation and In Vitro-Ex vivo Evaluation of Cannabidiol and Cannabidiol-Valine-Hemisuccinate Loaded Lipid-Based Nanoformulations for Ocular Applications. Int J Pharm. 2024;657:124110. https://www.sciencedirect.com/science/article/pii/S0378517324003442 DOI: https://doi.org/10.1016/j.ijpharm.2024.124110

15. Reddy TS, Zomer R, Mantri N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phyther Res. 2023;37:1526–38. DOI: https://doi.org/10.1002/ptr.7742

16. Matarazzo AP, Elisei LMS, Carvalho FC, Bonfílio R, Ruela ALM, Galdino G, et al. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci. 2021;159:105698. https://www.sciencedirect.com/science/article/pii/S0928098720304887 DOI: https://doi.org/10.1016/j.ejps.2020.105698

17. Imran M, Iqubal MK, Imtiyaz K, Saleem S, Mittal S, Rizvi MMA, et al. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm. 2020;587:119705. https://www.sciencedirect.com/science/article/pii/S037851732030689X DOI: https://doi.org/10.1016/j.ijpharm.2020.119705

18. Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm. 2019;563:110–21. https://www.sciencedirect.com/science/article/pii/S0378517319302480 DOI: https://doi.org/10.1016/j.ijpharm.2019.03.056

19. Pinto F, de Barros DPC, Reis C, Fonseca LP. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design. J Mol Liq. 2019;293:111468. https://www.sciencedirect.com/science/article/pii/S0167732219317787 DOI: https://doi.org/10.1016/j.molliq.2019.111468

20. Kesharwani D, Das Paul S, Paliwal R, Satapathy T. Development, QbD based optimization and in vitro characterization of Diacerein loaded nanostructured lipid carriers for topical applications. J Radiat Res Appl Sci. 2023;16:100565. https://doi.org/10.1016/j.jrras.2023.100565 DOI: https://doi.org/10.1016/j.jrras.2023.100565

21. Kim MH, Kim KT, Sohn SY, Lee JY, Lee CH, Yang H, et al. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(s)-protopanaxadiol (PPD) by box-behnken design. Int J Nanomedicine. 2019;14:8509–20. DOI: https://doi.org/10.2147/IJN.S215835

22. Almeida EDP, Santos Silva LA, de Araujo GRS, Montalvão MM, Matos SS, da Cunha Gonsalves JKM, et al. Chitosan-functionalized nanostructured lipid carriers containing chloroaluminum phthalocyanine for photodynamic therapy of skin cancer. Eur J Pharm Biopharm. 2022;179:221–31. https://www.sciencedirect.com/science/article/pii/S0939641122002041 DOI: https://doi.org/10.1016/j.ejpb.2022.09.009

23. Iqubal MK, Iqubal A, Imtiyaz K, Rizvi MMA, Gupta MM, Ali J, et al. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur J Pharm Biopharm. 2021;163:223–39. https://doi.org/10.1016/j.ejpb.2021.04.007 DOI: https://doi.org/10.1016/j.ejpb.2021.04.007

24. Kazmi I, Al-Abbasi FA, Nadeem MS, Altayb HN, Alshehri S, Imam SS. Formulation, optimization and evaluation of luteolin-loaded topical nanoparticulate delivery system for the skin cancer. Pharmaceutics. 2021;13:1–17. DOI: https://doi.org/10.3390/pharmaceutics13111749

25. Soni K, Rizwanullah M, Kohli K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells, Nanomedicine Biotechnol. 2018;46:15–31. https://doi.org/10.1080/21691401.2017.1408124 DOI: https://doi.org/10.1080/21691401.2017.1408124

26. Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci. 2024;357:123043. https://www.sciencedirect.com/science/article/pii/S0024320524006337 DOI: https://doi.org/10.1016/j.lfs.2024.123043

27. Ahmed S, Gull A, Aqil M, Danish Ansari M, Sultana Y. Poloxamer-407 thickened lipid colloidal system of agomelatine for brain targeting: Characterization, brain pharmacokinetic study and behavioral study on Wistar rats. Colloids Surfaces B Biointerfaces. 2019;181:426–36. https://doi.org/10.1016/j.colsurfb.2019.05.016 DOI: https://doi.org/10.1016/j.colsurfb.2019.05.016

28. Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: Formulation variables and instrumental parameters. Pharmaceutics. 2020;12:1–27. DOI: https://doi.org/10.3390/pharmaceutics12070599

29. Zhang W, Li X, Ye T, Chen F, Sun X, Kong J, et al. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int J Pharm. 2013;454:354–66. https://www.sciencedirect.com/science/article/pii/S0378517313006583 DOI: https://doi.org/10.1016/j.ijpharm.2013.07.032

30. Kim S, Abdella S, Abid F, Afinjuomo F, Youssef SH, Holmes A, et al. Development and Optimization of Imiquimod-Loaded Nanostructured Lipid Carriers Using a Hybrid Design of Experiments Approach. Int J Nanomedicine. 2023;18:1007–29. DOI: https://doi.org/10.2147/IJN.S400610

31. Subramaniam B, Siddik ZH, Nagoor NH. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanoparticle Res. 2020;22. DOI: https://doi.org/10.1007/s11051-020-04848-0

32. Ye Q, Li J, Li T, Ruan J, Wang H, Wang F, et al. Development and evaluation of puerarin-loaded controlled release nanostructured lipid carries by central composite design. Drug Dev Ind Pharm. 2021;47:113–25. http://dx.doi.org/10.1080/03639045.2020.1862170 DOI: https://doi.org/10.1080/03639045.2020.1862170

33. Pratiwi G, Martien R, Murwanti R. Chitosan nanoparticle as a delivery system for polyphenols from meniran extract (Phyllanthus niruri l.): Formulation, optimization, and immunomodulatory activity. Int J Appl Pharm. 2019;11:50–8. DOI: https://doi.org/10.22159/ijap.2019v11i2.29999

34. Ananth P, Koland M. Topical delivery of fenugreek seed extract loaded solid lipid nanoparticles based hydrogels for alopecia. J Pharm Res Int. 2021;33:231–41. DOI: https://doi.org/10.9734/jpri/2021/v33i40A32239

35. Wu T-H, Yen F-L, Lin L-T, Tsai T-R, Lin C-C, Cham T-M. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346:160–8. DOI: https://doi.org/10.1016/j.ijpharm.2007.06.036

36. Zhang M, Hagan CT, Foley H, Tian X, Yang F, Man K, et al. Acta Biomaterialia Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models. 2021;124:327–35. DOI: https://doi.org/10.1016/j.actbio.2021.02.001

37. Iqbal B, Ali J, Ganguli M, Mishra S, Baboota S. Silymarin-loaded nanostructured lipid carrier gel for the treatment of skin cancer. Nanomedicine. 2019;14:1077–93. DOI: https://doi.org/10.2217/nnm-2018-0235

38. Alhalmi A, Amin S, Beg S, Al-Salahi R, Mir SR, Kohli K. Formulation and optimization of naringin loaded nanostructured lipid carriers using Box-Behnken based design: In vitro and ex vivo evaluation. J Drug Deliv Sci Technol. 2022;74:103590. https://doi.org/10.1016/j.jddst.2022.103590 DOI: https://doi.org/10.1016/j.jddst.2022.103590

39. Cimino C, Sánchez López E, Bonaccorso A, Bonilla L, Musumeci T, Badia J, et al. In vitro and in vivo studies of ocular topically administered NLC for the treatment of uveal melanoma. Int J Pharm. 2024;660. DOI: https://doi.org/10.1016/j.ijpharm.2024.124300

40. Adnan M, Akhter MH, Afzal O, Altamimi ASA, Ahmad I, Alossaimi MA, et al. Exploring Nanocarriers as Treatment Modalities for Skin Cancer. Molecules. 2023;28:1–31. DOI: https://doi.org/10.3390/molecules28155905

Downloads

Published

2026-01-01

How to Cite

1.
Aldawsari MF, Khalid Anwer M. QBD Driven Approach Design and Optimization of Lipid-Based Nanoformulation of Cannabidiol for Enhanced Treatment of Non-Melanoma Skin Cancer. Salud, Ciencia y Tecnología [Internet]. 2026 Jan. 1 [cited 2025 Dec. 29];6:2523. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2523