Mapping the factors influencing artificial intelligence adoption in auditing: a bibliometric analysis
DOI:
https://doi.org/10.56294/saludcyt20262517Keywords:
Artificial intelligence, bibliometric analysis, audit profession, digital transformation, technology adoption, auditor perceptionAbstract
Artificial intelligence has emerged as a decisive force in the auditing profession because it enhances automation, improves fraud detection, and strengthens professional judgment. However, the academic literature still lacks an integrated view of the factors that shape its adoption in auditing. This study addresses this gap by examining the intellectual structure and research trends on artificial intelligence adoption in auditing from 2016 to 2025 through a bibliometric approach. Data were obtained from the Dimensions database, and 210 English-language journal articles were retained after screening. The analysis employed text-based co-occurrence techniques to identify the main research themes and conceptual linkages. The results reveal five dominant lines of work: the transformation of internal and financial audits, the use of data analytics and digital tools, the adoption of new technologies and their effects on efficiency within audit firms, auditors’ perceptions and behavioral responses, and the broader opportunities and challenges facing the auditing profession. These findings show a progression from conceptual discussions toward empirical examinations that consider organizational, ethical, and strategic implications. The study offers a consolidated overview of how artificial intelligence adoption has evolved in auditing and provides a reference point for future investigations seeking to promote responsible and sustainable technological integration in assurance practices.
References
1. Barr-Pulliam D, Brown-Liburd HL, Munoko I. The effects of person-specific, task, and environmental factors on digital transformation and innovation in auditing: A review of the literature. J Int Financ Manag Account. 2022;33(2):337–374. https://doi.org/10.1111/jifm.12148 DOI: https://doi.org/10.1111/jifm.12148
2. Han H, Shiwakoti RK, Jarvis R, Mordi C, Botchie D. Accounting and auditing with blockchain technology and artificial intelligence: A literature review. Int J Account Inf Syst. 2023;48:100598. https://doi.org/10.1016/j.accinf.2022.100598 DOI: https://doi.org/10.1016/j.accinf.2022.100598
3. Kokina J, Davenport TH. The emergence of artificial intelligence: How automation is changing auditing. J Emerg Technol Account. 2017;14(1):115–122. https://doi.org/10.2308/jeta-51730 DOI: https://doi.org/10.2308/jeta-51730
4. Fedyk A, Hodson J, Khimich N, Fedyk T. Is artificial intelligence improving the audit process? Rev Account Stud. 2022;27(3):938–985. https://doi.org/10.1007/s11142-022-09697-x DOI: https://doi.org/10.1007/s11142-022-09697-x
5. Khan F, Ullah Jan S, Zia-ul-haq HM. Artificial intelligence adoption, audit quality and integrated financial reporting in GCC markets. Asian Rev Account. 2024. https://doi.org/10.1108/ARA-03-2024-0085 DOI: https://doi.org/10.1108/ARA-03-2024-0085
6. Wassie FA, Lakatos LP. Artificial intelligence and the future of the internal audit function. Humanit Soc Sci Commun. 2024;11(1):386. https://doi.org/10.1057/s41599-024-02905-w DOI: https://doi.org/10.1057/s41599-024-02905-w
7. Chu MK, Yong KO. Big data analytics for business intelligence in accounting and audit. Open J Soc Sci. 2021;9(9):42–52. https://doi.org/10.4236/jss.2021.99004 DOI: https://doi.org/10.4236/jss.2021.99004
8. Kokina J, Blanchette S, Davenport TH, Pachamanova D. Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. Int J Account Inf Syst. 2025;56:100734. https://doi.org/10.1016/j.accinf.2025.100734 DOI: https://doi.org/10.1016/j.accinf.2025.100734
9. Pham QT, Ngo TKM, Cristofaro M, Misra S. Barriers in adopting IT and data analytics for internal auditing: Findings from Vietnam’s banking sector. Int J Manag Decis Mak. 2021;20(2):198. https://doi.org/10.1504/IJMDM.2021.114448 DOI: https://doi.org/10.1504/IJMDM.2021.114448
10. Kumar D, Phani BV, Chilamkurti N, Saurabh S, Ratten V. Filling the SME credit gap: A systematic review of blockchain-based SME finance literature. J Trade Sci. 2023;11(2–3):45–72. https://doi.org/10.1108/JTS-06-2023-0003 DOI: https://doi.org/10.1108/JTS-06-2023-0003
11. Arham MW. Revolutionizing financial audits: The transformative impact of AI and blockchain technologies on modern auditing practices. Am J Ind Bus Manag. 2025;15(1):14–29. https://doi.org/10.4236/ajibm.2025.151002 DOI: https://doi.org/10.4236/ajibm.2025.151002
12. Eilifsen A, Kinserdal F, Messier WF Jr, McKee TE. An exploratory study into the use of audit data analytics on audit engagements. Account Horiz. 2020;34(4):75–103. https://doi.org/10.2308/HORIZONS-19-121 DOI: https://doi.org/10.2308/HORIZONS-19-121
13. Karim MS, Pauzi NFM, Shamsudin A, Mamat SN, Fatah MMA, Ahmad K, et al. Artificial intelligence adoption in smaller audit practices. Inf Manag Bus Rev. 2025;17(1(S)):241–250. https://doi.org/10.22610/imbr.v17i1(I)S.4381 DOI: https://doi.org/10.22610/imbr.v17i1(I)S.4381
14. Almufadda G, Almezeini NA. Artificial intelligence applications in the auditing profession: A literature review. J Emerg Technol Account. 2022;19(2):29–42. https://doi.org/10.2308/JETA-2020-083 DOI: https://doi.org/10.2308/JETA-2020-083
15. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
16. Vandapuye S, Jabraoui S. An overview of information systems in auditing: Insights from bibliometric research. Salud Cienc Tecnol Ser Conf. 2024;3:1013–1013. https://doi.org/10.56294/sctconf20241013 DOI: https://doi.org/10.56294/sctconf20241013
17. Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003;14(3):207–222. https://doi.org/10.1111/1467-8551.00375 DOI: https://doi.org/10.1111/1467-8551.00375
18. Siew EG, Rosli K, Yeow PHP. Organizational and environmental influences in the adoption of computer-assisted audit tools and techniques (CAATTs) by audit firms in Malaysia. Int J Account Inf Syst. 2020;36:100445. https://doi.org/10.1016/j.accinf.2019.100445 DOI: https://doi.org/10.1016/j.accinf.2019.100445
19. Tang F, Norman CS, Vendrzyk VP. Exploring perceptions of data analytics in the internal audit function. Behav Inf Technol. 2017;36(11):1125–1136. https://doi.org/10.1080/0144929X.2017.1355014 DOI: https://doi.org/10.1080/0144929X.2017.1355014
20. Issa H, Sun T, Vasarhelyi MA. Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. J Emerg Technol Account. 2016;13(2):1–20. https://doi.org/10.2308/jeta-10511 DOI: https://doi.org/10.2308/jeta-10511
21. Krieger F, Drews P, Velte P. Explaining the (non-) adoption of advanced data analytics in auditing: A process theory. Int J Account Inf Syst. 2021;41:100511. https://doi.org/10.1016/j.accinf.2021.100511 DOI: https://doi.org/10.1016/j.accinf.2021.100511
22. Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
23. Zupic I, Čater T. Bibliometric methods in management and organization. Organ Res Methods. 2015;18(3):429–472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629
24. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535 DOI: https://doi.org/10.1136/bmj.b2535
25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89. https://doi.org/10.1186/s13643-021-01626-4 DOI: https://doi.org/10.1186/s13643-021-01626-4
26. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
27. van Eck NJ, Waltman L. Visualizing bibliometric networks. In: Measuring Scholarly Impact: Methods and Practice. Cham: Springer; 2014. p.285–320. https://doi.org/10.1007/978-3-319-10377-8_13 DOI: https://doi.org/10.1007/978-3-319-10377-8_13
28. Hasan AR. Artificial intelligence (AI) in accounting & auditing: A literature review. Open J Bus Manag. 2022;10(1):440–465. https://doi.org/10.4236/ojbm.2022.101026 DOI: https://doi.org/10.4236/ojbm.2022.101026
29. Cho S, Vasarhelyi MA, Sun T, Zhang C. Learning from machine learning in accounting and assurance. J Emerg Technol Account. 2020;17(1):1–10. https://doi.org/10.2308/jeta-10718 DOI: https://doi.org/10.2308/jeta-10718
30. Noordin NA, Hussainey K, Hayek AF. The use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. J Risk Financ Manag. 2022;15(8):339. https://doi.org/10.3390/jrfm15080339 DOI: https://doi.org/10.3390/jrfm15080339
31. Cangemi MP. Views on internal audit, internal controls, and internal audit’s use of technology. EDPACS. 2016;53(1):1–9. https://doi.org/10.1080/07366981.2015.1128186 DOI: https://doi.org/10.1080/07366981.2015.1128186
32. Abdelwahed AS, Abu-Musa AA, Moubarak H, Badawy HA. The use of big data and analytics in external auditing: Does audit firm size matter? Evidence from a developing country. S Afr J Account Res. 2024;38(2):113–145. https://doi.org/10.1080/10291954.2023.2279751 DOI: https://doi.org/10.1080/10291954.2023.2279751
33. Du X. Impact of artificial intelligence on auditing and the future of human workforce replacement. Adv Econ Manag Polit Sci. 2024;115(1):112–119. https://doi.org/10.54254/2754-1169/115/2024BJ0205 DOI: https://doi.org/10.54254/2754-1169/115/2024BJ0205
34. Fachriyah N, Anggraeni OL. The use of artificial intelligence in financial statement audit. J Indones Sos Teknol. 2024;5(10):3881–3892. https://doi.org/10.59141/jist.v5i10.5251 DOI: https://doi.org/10.59141/jist.v5i10.5251
35. Safonova MF, Alekseenko AY. Artificial intelligence technologies: Prospects for use in the company’s internal audit. Invest Anal. 2022;25(12):1403–1427. https://doi.org/10.24891/ia.25.12.1403 DOI: https://doi.org/10.24891/ia.25.12.1403
36. Aljaaidi KS, Alwadani NF, Adow AH. The impact of artificial intelligence applications on the performance of accountants and audit firms in Saudi Arabia. Int J Digit Netw Syst. 2023;7(3):1165–1178. https://doi.org/10.5267/j.ijdns.2023.5.007 DOI: https://doi.org/10.5267/j.ijdns.2023.5.007
37. Daoud IB, Rekik AM. The artificial intelligence in auditing: Corporate behaviour and technological adoption in an emerging market. Int J Appl Econ Finance Account. 2024;20(2):163–173. https://doi.org/10.33094/ijaefa.v20i2.1953 DOI: https://doi.org/10.33094/ijaefa.v20i2.1953
38. Othman MS. Investigating the extent and impact of AI applications on audit firms’ performance in Saudi Arabia. J Ecohumanism. 2024;3(8):11740–11760. https://doi.org/10.62754/joe.v3i8.5770 DOI: https://doi.org/10.62754/joe.v3i8.5770
39. Albitar K, Gerged AM, Kikhia H, Hussainey K. Auditing in times of social distancing: The effect of COVID-19 on auditing quality. Int J Account Inf Manag. 2020;29(1):169–178. https://doi.org/10.1108/IJAIM-08-2020-0128 DOI: https://doi.org/10.1108/IJAIM-08-2020-0128
40. Liew A, Boxall P, Setiawan D. The transformation to data analytics in Big Four financial audit: What, why and how? Pac Account Rev. 2022;34(4):569–584. https://doi.org/10.1108/PAR-06-2021-0105 DOI: https://doi.org/10.1108/PAR-06-2021-0105
41. Kassar M, Jizi M. Artificial intelligence and robotic process automation in auditing and accounting: A systematic literature review. J Appl Account Res. 2025:1–25. https://doi.org/10.1108/JAAR-05-2024-0175 DOI: https://doi.org/10.1108/JAAR-05-2024-0175
42. Betti N, DeSimone S, Gray J, Poncin I. The impacts of the use of data analytics and the performance of consulting activities on perceived internal audit quality. J Account Organ Change. 2023;20(2):334–361. https://doi.org/10.1108/JAOC-08-2022-0125 DOI: https://doi.org/10.1108/JAOC-08-2022-0125
43. Kurt Y. Digital transformation in accounting and auditing: Insights from the ChatGPT example. Igdir IIBF Derg. 2023;10:11–22. https://doi.org/10.58618/igdiriibf.1296543 DOI: https://doi.org/10.58618/igdiriibf.1296543
44. Matchuk S, Havrylenko V, Lukanovska I, Kharkhalis T, Ostapenko Y. The evolution of accounting and auditing in the era of digital technologies: The role of cloud services and process automation. Salud Cienc Tecnol Ser Conf. 2024;3:1138–1138. https://doi.org/10.56294/sctconf2024.1138 DOI: https://doi.org/10.56294/sctconf2024.1138
45. Rakipi R, De Santis F, D’Onza G. Correlates of the internal audit function’s use of data analytics in the big data era: Global evidence. J Int Account Audit Tax. 2021;42:100357. https://doi.org/10.1016/j.intaccaudtax.2020.100357 DOI: https://doi.org/10.1016/j.intaccaudtax.2020.100357
46. Law KKF, Shen M. How does artificial intelligence shape audit firms? Manag Sci. 2025;71(5):3641–3666. https://doi.org/10.1287/mnsc.2022.04040 DOI: https://doi.org/10.1287/mnsc.2022.04040
47. Rahman MJ, Zhu H, Yue L. Does the adoption of artificial intelligence by audit firms and their clients affect audit quality and efficiency? Evidence from China. Manag Audit J. 2024;39(6):668–699. https://doi.org/10.1108/MAJ-03-2023-3846 DOI: https://doi.org/10.1108/MAJ-03-2023-3846
48. Appah E. Artificial intelligence and audit practice of public audit firms in Nigeria: Does audit experience and expertise matter? Eur J Bus Innov Res. 2025;13(6). DOI: https://doi.org/10.37745/ejbir.2013/vol13n61041
49. Hady AF, Fitria M. The role of artificial intelligence in enhancing the effectiveness and efficiency in audit firms. J Sharia Econ Bank Account. 2025;2(1):49–64. https://doi.org/10.52620/jseba.v2i1.142 DOI: https://doi.org/10.52620/jseba.v2i1.142
50. Ma-Nlep M. The influence of audit firm culture on the adoption of artificial intelligence in audit firms. Muma Bus Rev. 2025;9:001. DOI: https://doi.org/10.28945/5408
51. Rob MAA, Nor MNM, Alshdaifat SM, Khalaf AM, Salleh Z. Impact of competition and client size on big data analytics adoption: A TAM study of auditors. Qubahan Acad J. 2025;5(1):278–294. https://doi.org/10.48161/qaj.v5n1a1129 DOI: https://doi.org/10.48161/qaj.v5n1a1129
52. Albawwat I, Frijat YA. An analysis of auditors’ perceptions towards artificial intelligence and its contribution to audit quality. J Account. 2021;755–762. https://doi.org/10.5267/j.ac.2021.2.009 DOI: https://doi.org/10.5267/j.ac.2021.2.009
53. Islam S, Stafford T. Factors associated with the adoption of data analytics by internal audit function. Manag Audit J. 2021;37(2):193–223. https://doi.org/10.1108/MAJ-04-2021-3090 DOI: https://doi.org/10.1108/MAJ-04-2021-3090
54. Bento RF, White LF. Artificial intelligence and ethical professional judgments in a small audit firm context. Bus Prof Ethics J. 2023;42(3):315–357. https://doi.org/10.5840/bpej20231018146 DOI: https://doi.org/10.5840/bpej20231018146
55. Pratt R, Otero AR. Assessing the integration of ChatGPT in IT audits that support financial statement audits. Int J Artif Intell Tools. 2024;14(4):1–15. https://doi.org/10.5121/ijait.2024.14401 DOI: https://doi.org/10.5121/ijait.2024.14401
56. Arun K. Artificial intelligence and internal audit staffing practices: Necessitating a different skill set from auditors. Denetisim. 2024;(31):7–17. https://doi.org/10.58348/denetisim.1519491 DOI: https://doi.org/10.58348/denetisim.1519491
57. Imane L. Artificial intelligence in financial auditing: Improving efficiency and addressing ethical and regulatory challenges. Braz J Bus. 2025;7(1):e76833. https://doi.org/10.34140/bjbv7n1-017 DOI: https://doi.org/10.34140/bjbv7n1-017
58. Kuncoro EA, Lindrianasari L, Fatmasari A. Artificial intelligence and the role of external auditor in Indonesia. E3S Web Conf. 2023;426:02122. https://doi.org/10.1051/e3sconf/202342602122 DOI: https://doi.org/10.1051/e3sconf/202342602122
59. Rajagukguk JSS, Harnovinsah, Mulyadi JM. Evaluation of audit evidence quality in public accounting firms in DKI Jakarta: Perspectives of professional scepticism, auditor experience, and artificial intelligence usage. Int J Multidiscip Soc Sci Res. 2024;6(1):291–304. https://doi.org/10.56293/IJMSSSR.2024.4826 DOI: https://doi.org/10.56293/IJMSSSR.2024.4826
60. Leocádio D, Malheiro L, Reis J. Artificial intelligence in auditing: A conceptual framework for auditing practices. Adm Sci. 2024;14(10):238. https://doi.org/10.3390/admsci14100238 DOI: https://doi.org/10.3390/admsci14100238
61. Libby R, Witz PD. Can artificial intelligence reduce the effect of independence conflicts on audit firm liability? Contemp Account Res. 2024;41(2):1346–1375. https://doi.org/10.1111/1911-3846.12941 DOI: https://doi.org/10.1111/1911-3846.12941
62. Mpofu F. The application of artificial intelligence in external auditing and its implications on audit quality: A review of the ongoing debates. Int J Res Bus Soc Sci. 2023;12(9):496–512. https://doi.org/10.20525/ijrbs.v12i9.2737 DOI: https://doi.org/10.20525/ijrbs.v12i9.2737
63. Lodhia S, Farooq MB, Sharma U, Zaman R. Digital technologies and sustainability accounting, reporting and assurance: Framework and research opportunities. Meditari Account Res. 2025;33(2):417–441. https://doi.org/10.1108/MEDAR-01-2025-2796 DOI: https://doi.org/10.1108/MEDAR-01-2025-2796
64. Abu Huson Y, Sierra García L, García Benau MA, Mohammad Aljawarneh N. Cloud-based artificial intelligence and audit report: The mediating role of the auditor. VINE J Inf Knowl Manag Syst. 2025. https://doi.org/10.1108/VJIKMS-03-2024-0089 DOI: https://doi.org/10.1108/VJIKMS-03-2024-0089
65. Sophia V, Siham J. Digitalization’s influence on audit: Examining the implications of big data and blockchain technology. In: Artificial Intelligence, Big Data, IoT and Blockchain in Healthcare: From Concepts to Applications. Cham: Springer; 2024. p.23–33. https://doi.org/10.1007/978-3-031-65014-7_3. DOI: https://doi.org/10.1007/978-3-031-65014-7_3
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Lai Thi Thu Thuy (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.