Optimization of the Design of a Centrifugal Pump of the Automotive Engine Cooling System
DOI:
https://doi.org/10.56294/saludcyt20262514Keywords:
centrifugal pump, geometrical parameters, volute design, engine automotive, computational fluid dynamics (CFD)Abstract
Introduction: The study focused on analyzing the design of a centrifugal pump in vehicle engine cooling systems. Cavitation, a phenomenon that impacts the efficiency and durability of hydraulic components, was examined as a key variable. Based on the geometry of the centrifugal pump impeller, computational fluid dynamics (CFD) simulations and experimental validation were employed.
Methods: Three combined strategies were implemented: analysis of hydraulic parameters using equations; precise modeling of flow behavior to evaluate geometric configurations; and comparison of numerical data with actual pressure and flow measurements. Fluctuations in the motor diameter (61 mm, 62 mm, and 63 mm) were analyzed under normal operating conditions and acceleration.
Results: Increasing the inlet diameter to 61 mm proved to be the ideal solution, achieving a 5% increase in pump inlet pressure and significantly reducing the risk of cavitation. CFD methods were confirmed as valuable tools for refining designs, demonstrating a high correlation with experimental data.
Conclusions: The effective use of tools such as CFD to address critical challenges in automotive engineering is emphasized, optimizing both technical performance and environmental impact. Furthermore, it increases hydraulic efficiency and reduces cavitation in centrifugal pump in vehicle engine cooling systems.
References
1. Kawamoto R, Mochizuki H, Moriguchi Y, Nakano T, Motohashi M, Sakai Y, et al. Estimation of CO₂ emissions of internal combustion engine vehicle and battery electric vehicle using LCA. Sustainability. 2019; 11(9):2690. DOI: https://doi.org/10.3390/su11092690
2. Kalghatgi G. Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport. Engineering. 2019; 5(3):510–518. DOI: https://doi.org/10.1016/j.eng.2019.01.009
3. Rocha-Hoyos JC, Tipanluisa LE, Zambrano VD, Portilla ÁA. Estudio de un motor a gasolina en condiciones de altura con mezclas de aditivo orgánico en el combustible. Inf Tecnol. 2018; 29(5):325–334. DOI: https://doi.org/10.4067/S0718-07642018000500325
4. Lü X, Wu Y, Lian J, Zhang Y, Chen C, Wang P, et al. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers Manag. 2020; 205:112474. DOI: https://doi.org/10.1016/j.enconman.2020.112474
5. Broatch A, Olmeda P, Martín J, Dreif A. Improvement in engine thermal management by changing coolant and oil mass. Appl Therm Eng. 2022; 212:118513. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118513
6. Llanes-Cedeño EA, Grefa Shiguango SF, Molina-Osejos JV, Rocha-Hoyos JC. Incidence of automotive air conditioning on the index of fuel consumption in spark ignition vehicle on a route in the Ecuadorian Amazon. Ingenius Rev Cienc Tecnol. 2024; 31:115–126. DOI: https://doi.org/10.17163/ings.n31.2024.10
7. Yu J, Zhang T, Qian J. Efficiency testing methods for centrifugal pumps. In: Electr Motor Prod. 2011. p. 125–172. DOI: https://doi.org/10.1533/9780857093813.125
8. Puma-Benavides DS, Cevallos-Carvajal AS, Masaquiza-Yanzapanta AG, Quinga-Morales MI, Moreno-Pallares RR, Usca-Gomez HG, et al. Comparative analysis of energy consumption between electric vehicles and combustion engine vehicles in high-altitude urban traffic. World Electr Veh J. 2024;15(8). DOI: https://doi.org/10.3390/wevj15080355
9. Mentzos M, Filios A, Margaris P, Papanikas D. CFD predictions of flow through a centrifugal pump impeller. In: Proc Int Conf Experiments/Process/System Modelling/Simulation/Optimization. Athens; 2005. p. 1–8.
10. Hedi L, Hatem K, Ridha Z. Numerical flow simulation in a centrifugal pump. In: Int Renew Energy Congr. 2010:300–304.
11. Bacharoudis EC, Filios AE, Mentzos MD, Margaris DP. Parametric study of a centrifugal pump impeller by varying the outlet blade angle. Open Mech Eng J. 2008;2(1). DOI: https://doi.org/10.2174/1874155X00802010075
12. Shah SR, Jain SV, Patel RN, Lakhera VJ. CFD for centrifugal pumps: A review of the state-of-the-art. Procedia Eng. 2013; 51:715–720. DOI: https://doi.org/10.1016/j.proeng.2013.01.102
13. Fatigati F, Di Battista D, Cipollone R. Design improvement of volumetric pump for engine cooling in the transportation sector. Energy. 2021; 231:120936. DOI: https://doi.org/10.1016/j.energy.2021.120936
14. Derakhshan S, Pourmahdavi M, Abdolahnejad E, Reihani A, Ojaghi A. Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm. Comput Fluids. 2013; 81:145–151. DOI: https://doi.org/10.1016/j.compfluid.2013.04.018
15. Wang W, Yuan S, Pei J, Zhang J. Optimization of the diffuser in a centrifugal pump by combining response surface method with multi-island genetic algorithm. Proc Inst Mech Eng Part E J Process Mech Eng. 2017;231(2):191–201. DOI: https://doi.org/10.1177/0954408915586310
16. Xu Y, Tan L, Cao S, Qu W. Multiparameter and multiobjective optimization design of centrifugal pump based on orthogonal method. Proc Inst Mech Eng Part C J Mech Eng Sci. 2017;231(14):2569–2579. DOI: https://doi.org/10.1177/0954406216640303
17. Fracassi A, De Donno R, Ghidoni A, Congedo PM. Shape optimization and uncertainty assessment of a centrifugal pump. Eng Optim. 2022;54(2):200–217. DOI: https://doi.org/10.1080/0305215X.2020.1858075
18. Ramakrishna R, Hemalatha S, Rao DS. Analysis and performance of centrifugal pump impeller. Mater Today Proc. 2022; 50:2467–2473. DOI: https://doi.org/10.1016/j.matpr.2021.10.364
19. Giuffre A, Colonna P, Pini M. The effect of size and working fluid on the multi-objective design of high-speed centrifugal compressors. Int J Refrig. 2022; 143:43–56. DOI: https://doi.org/10.1016/j.ijrefrig.2022.06.023
20. Mott NF. A theory of the fragmentation of shells and bombs. In: Fragmentation of Rings and Shells. 2006. p. 243–294. DOI: https://doi.org/10.1007/978-3-540-27145-1_11
21. Zhang YL, Zhu ZC, Dou HS, Cui BL. A generalized Euler equation to predict theoretical head of turbomachinery. Int J Fluid Mech Res. 2015;42(1). DOI: https://doi.org/10.1615/InterJFluidMechRes.v42.i1.30
22. Mataix C. Mecánica de fluidos y máquinas hidráulicas. 2ª ed. Madrid: Ediciones del Castillo SA; 1986.
23. Hongyu G, Wei J, Yuchuan W, Hui T, Ting L, Diyi C. Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine. Renew Energy. 2021; 168:21–30. DOI: https://doi.org/10.1016/j.renene.2020.12.030
24. Çengel YA, Cimbala JM. Introduction to computational fluid dynamics. In: Fluid Mechanics: Fundamentals and Applications. 2006.
25. Xamán, J. Dinámica de fluidos computacional para ingenieros. Palibrio, 2016.
26. Fernandes del Pozo D, Liné A, Van Geem KM, Le Men C, Nopens I. Hydrodynamic analysis of an axial impeller in a non-Newtonian fluid through particle image velocimetry. AIChE J. 2020;66(6): e16939. DOI: https://doi.org/10.1002/aic.16939
27. Karlsen-Davies N-HD. Computational and experimental analysis of the effects of manufacturing tolerances on the performance of a regenerative liquid ring pump [dissertation]. Lancaster University (United Kingdom); 2017.
28. Orlandi F, Montorsi L, Milani M. Cavitation analysis through CFD in industrial pumps: A review. Int J Thermofluids. 2023; 20:100506. DOI: https://doi.org/10.1016/j.ijft.2023.100506
29. Hermogenes GIL. Manual CEAC del automóvil. Grupo Editorial; 2003.
30. Kirchhofer M, Krieger M, Hofer D. A comparative study on numerical flow simulations of a centrifugal electronic cooling fan using four different turbulence models. Energies. 2023;16(23):7864. DOI: https://doi.org/10.3390/en16237864
31. Feudjio Nguefack MC, Mtopi Fotso BE, Fogue M. Optimization of the position of Savonius turbines mounted on a hybrid vehicle by CFD analysis. Int J Green Energy. 2022; 19(7):757–774. DOI: https://doi.org/10.1080/15435075.2021.1961262
32. Montalvo L. Análisis y optimización en el diseño mediante CFD de la bomba centrífuga del sistema de refrigeración del motor Kubota V3307, para fabricación nacional del elemento [thesis]. 2017. Available from: https://repositorio.uisek.edu.ec/handle/123456789/2652
33. Ramirez R, Avila E, Lopez L, Bula A, Forero JD. CFD characterization and optimization of the cavitation phenomenon in dredging centrifugal pumps. Alexandria Eng J. 2020; 59(1):291–309. DOI: https://doi.org/10.1016/j.aej.2019.12.041
34. Shrestha S, Bijukchhe PL, Chitrakar S, Thapa B, Qian Z, Guo Z. Comparative study of different erosion models in Francis runner blade using OpenFOAM. IOP Conf Ser Mater Sci Eng. 2024; 1314(1):012009. DOI: https://doi.org/10.1088/1757-899X/1314/1/012009
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Edilberto Antonio Llanes-Cedeño, Édison Argüello Maya, Juan Carlos Quinchuela Paucar , Rodrigo Rigoberto Moreno-Pallares , Lenin Montalvo Ochoa (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.