Interdisciplinary education and skills driving sustainable innovation in applied biosciences

Authors

  • Enrique José Salazar Llorente Professor, Agroindustry Program, Faculty of Agricultural Sciences, Technical University of Babahoyo, Babahoyo, Ecuador Author https://orcid.org/0000-0002-1699-042X
  • Rubén Dario Ruíz Andaluz Professor, Communication Program, Faculty of Social Communication Sciences, University of Guayaquil. Guayaquil, Ecuador Author https://orcid.org/0009-0002-1306-257X
  • Elizabeth de Mora Litardo Professor, Pedagogy of Experimental Sciences – Informatics Program, Faculty of Legal, Social and Education Sciences, Technical University of Babahoyo. Babahoyo, Ecuador Author https://orcid.org/0000-0001-7608-9441
  • Julio Ernesto Mora Aristega Professor, Commerce Program, Faculty of Administration, Finance and Informatics, Technical University of Babahoyo. Babahoyo, Ecuador Author https://orcid.org/0000-0002-9928-9179
  • Gladys Patricia Guevara Alban Professor, Early Childhood Education Program, Faculty of Legal, Social and Education Sciences, Technical University of Babahoyo. Babahoyo, Ecuador Author https://orcid.org/0000-0002-2312-6226

DOI:

https://doi.org/10.56294/saludcyt20262504

Keywords:

Active learning, Interdisciplinary education, Professional competencies, Biosciences, Educational technology

Abstract

Introduction: interdisciplinary education has emerged as a strategic approach to enhance competencies in applied biosciences, fostering sustainable innovation in professional training.
Objective: to analyze pedagogical, technological, and curricular strategies that promote integral learning in bioscience programs, based on recent literature.
Method: An exploratory review of scientific publications from 2020 to 2025 was conducted, structured according to the PRISMA methodology, with a focus on educational approaches in biological and environmental sciences.
Results: Active methodologies—such as problem-based learning, the use of information and communication technologies (ICTs), and the integration of Sustainable Development Goals  
(SDGs)—strengthened critical skills including analytical thinking, multidisciplinary collaboration, and socio-environmental awareness. Integrated curricula and collaborative projects proved effective in connecting theoretical knowledge with real-world problem solving, reinforcing both academic and social relevance. However, structural limitations persisted, including curricular rigidity, limited teacher training in interdisciplinary methods, and the digital divide.
Conclusions: Despite these challenges, the incorporation of emerging technologies—such as artificial intelligence and virtual learning environments—offers promising pathways to transform education into more flexible, inclusive, and sustainable models. Interdisciplinary education not only drives innovation in applied biosciences but also responds to the scientific, technological, and environmental demands of the 21st century.

References

1. Espino G, Gómez A, Inzunza S. Exploration of the development of interdisciplinary competence in teacher educators through the design of statistical projects. Inter Disciplina. 2023;11(29):333–57. doi:10.22201/CEIICH.24485705E.2023.29.84494 DOI: https://doi.org/10.22201/ceiich.24485705e.2023.29.84494

2. Ortiz B. Interdisciplinary teaching of biological sciences to non-STEM students through project-based learning. Cuad Pedagog Univ. 2025;22(43):25–43. doi:10.29197/CPU.v22i43.641

3. Badillo D, Lluma M, Guerrero C. Education and sustainability: Interdisciplinary strategies for the training of environmentally responsible citizens in diverse educational contexts. Rev Cient Multidiscip SAGA. 2025;2(1):342–51. doi:10.63415/SAGA.v2i1.50

4. Mera A, Gabriela A, Ordoñez B, Emanuel J, Keyner J. The applications of bioscience. ResearchGate. 2022. Available from: https://www.researchgate.net/publication/357648054

5. Castro A, García M. STEAM approach and early childhood education: A systematic literature review. Ensayos Rev Fac Educ Albacete. 2024;39(1):16–34. doi:10.18239/ensayos.v39i1.3383 DOI: https://doi.org/10.18239/ensayos.v39i1.3383

6. Cuncachi S, Ochoa S. Gamification and the teaching of organic chemistry in third-year high school students. Religación. 2022;7(34):e210977. doi:10.46652/rgn.v7i34.977 DOI: https://doi.org/10.46652/rgn.v7i34.977

7. Espinosa R, Calle N, Cajamarca C, Paucar E, Zumba E. Education for sustainable development in Ecuador: Curricular integration in general basic education. Mentor Rev Investig Educ Deport. 2025;4(10):81–94. doi:10.56200/mried.v4i10.8918 DOI: https://doi.org/10.56200/mried.v4i10.8918

8. Gomez M. Learning online research skills in lower secondary school: Long-term intervention effects, skill profiles and background factors. Inf Learn Sci. 2021;122(1–2):68–81. doi:10.1108/ILS-03-2020-0058 DOI: https://doi.org/10.1108/ILS-03-2020-0058

9. Barriga J, Barriga L, Barriga S. Interdisciplinarity: The need to unify a concept. Tecnociencia Chihuahua. 2020;13(3):140–8. doi:10.54167/tecnociencia.v13i3.477 DOI: https://doi.org/10.54167/tecnociencia.v13i3.477

10. Bell R, Orozco I, Lema B. Interdisciplinarity, conceptual approach and some implications for inclusive education. Rev Uniandes Episteme. 2022;9(1). Available from: https://revista.uniandes.edu.ec/ojs/index.php/EPISTEME/article/view/2518

11. Espinosa G, Chamba V, Espinosa J, Sánchez C. Evaluation of innovative strategies to foster interdisciplinary collaboration in regional universities. Polo Conoc. 2024. Available from: https://scholar.google.com/citations?view_op=view_citation&hl=es&user=qPXy2bkAAAAJ

12. Herrera J, Ochoa ED. Analysis of the relationship between education and technology. Cult Educ Soc. 2022;13(2):47–68. doi:10.17981/cultedusoc.13.2.2022.03 DOI: https://doi.org/10.17981/cultedusoc.13.2.2022.03

13. Leal G, Araya S. Interdisciplinarity from the perspective of future science teachers. Pensam Educ. 2024;61(3):1–12. doi:10.7764/PEL.61.3.2024.7 DOI: https://doi.org/10.7764/PEL.61.3.2024.7

14. Federico J, Garza D, Daniel J, Zurita A, César J, Villarreal M. Bibliometric analysis of artificial intelligence as a tool in higher education teaching. Lat Am Rev Cienc Soc Humanid. 2024;5(6):141–53. doi:10.56712/LATAM.v5i6.2997 DOI: https://doi.org/10.56712/latam.v5i6.2997

15. Benavides T, Acaro A, Tapia S. Application of learning and knowledge technologies in biology through simulation: An innovative approach to understanding biological phenomena. Cienc Lat Rev Cient Multidiscip. 2023;7(3):1477–87. doi:10.37811/cl_rcm.v7i3.6290 DOI: https://doi.org/10.37811/cl_rcm.v7i3.6290

16. Peraza L, Galvizu K, Bernardo M, Cruz J, Brooks M. Didactic proposal of an educational innovation with new technologies in basic biomedical sciences. Gac Med Espirituana. 2021;23(2):27–38. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1608-89212021000200027

17. Carrión E, Sotomayor S, Medel I. The use of videogames and gamification as innovative didactic material for learning social sciences in higher education. Edmetic. 2022;11(2):6. doi:10.21071/edmetic.v11i2.13663 DOI: https://doi.org/10.21071/edmetic.v11i2.13663

18. Trujillo L. The status of scientific evidence and its epistemic value in judicial processes: A proposal for interdisciplinary articulation based on the two dimensions of bioderecho. Rev Via Iuris. 2022;32:13–31. doi:10.37511/viaiuris.n32a1 DOI: https://doi.org/10.37511/viaiuris.n32a1

19. Orellana W. The teaching of biological sciences in higher education: An analysis of theoretical and didactic conceptions. Rev Dialogo Interdiscip Educ REDISED. 2023;5:209–18. Available from: https://revistas.ues.edu.sv/index.php/redised/article/view/3048

20. Calderón C, Jaramillo C, Isch É. Integrative Knowledge Project (PIS-1): An innovative experience. Cienc Lat Rev Cient Multidiscip. 2021;5(3):3613–24. doi:10.37811/cl_rcm.v5i3.554 DOI: https://doi.org/10.37811/cl_rcm.v5i3.554

21. Mera A, Gabriela A, Ordoñez B, Emanuel J, Keyner J. The applications of bioscience. ResearchGate. 2022. Available from: https://www.researchgate.net/publication/357648054

22. Ortiz B. Interdisciplinary teaching of biological sciences to non-STEM students through project-based learning. Cuad Pedagog Univ. 2025;22(43):25–43. doi:10.29197/CPU.v22i43.641 DOI: https://doi.org/10.29197/cpu.v22i43.641

23. García R, Cherne D, Castellanos O, Guzmán R. Methodological strategy to promote interlearning and labor education from the subject Natural Sciences. Rev Cient Multidiscip G-Nerando. 2025;6(1):1064–86. doi:10.60100/RCMG.v6i1.456 DOI: https://doi.org/10.60100/rcmg.v6i1.456

24. Santaolalla E, Urosa B, Martín O, Verde A, Díaz T. Interdisciplinarity in teacher education: Evaluation of the effectiveness of an educational innovation project. Sustainability. 2020;12(17):6748. doi:10.3390/su12176748 DOI: https://doi.org/10.3390/su12176748

25. Rentería J, Hincapie E, Rodríguez Y, Vélez C, Osorio B, Durango J. Global competence for sustainable development: An opportunity for higher education. Entramado. 2022;18(1). doi:10.18041/1900-3803/entramado.1.7641 DOI: https://doi.org/10.18041/1900-3803/entramado.1.7641

26. Barbera N, Hernández E, Vega A, Chirinos Y del V. Pedagogical management in times of the COVID-19 crisis: A dynamic conceived from interdisciplinary practice. Tend Investig Univ Latinoam. 2019;VII:211–24. doi:10.47212/TENDENCIAS_VII_2019_15. DOI: https://doi.org/10.47212/Tendencias_vii_2019_15

Downloads

Published

2026-01-01

How to Cite

1.
Salazar Llorente EJ, Ruíz Andaluz RD, de Mora Litardo E, Mora Aristega JE, Guevara Alban GP. Interdisciplinary education and skills driving sustainable innovation in applied biosciences. Salud, Ciencia y Tecnología [Internet]. 2026 Jan. 1 [cited 2026 Jan. 18];6:2504. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2504