Ethics, generative artificial intelligence, and educational assessment: An analysis of university students’ perceptions

Authors

DOI:

https://doi.org/10.56294/saludcyt20252359

Keywords:

ethics, generative artificial intelligence, educational measurement, perception

Abstract

Introduction: The ethical use of generative artificial intelligence (GAI) in Education, particularly in learning assessment, is an issue of growing importance in higher Education due to its impact on values and academic integrity. 
Objective: This research aimed to examine university students’ perceptions regarding the ethical use of GAI in evaluative practices, based on five pre-established ethical dimensions. Method: A quantitative, non-experimental and cross-sectional study was conducted. A questionnaire of 16 closed-ended Likert- scale items was administered to 2684 students from ten degrees at Santa Elena Peninsula State University, Ecuador. The processing and analysis followed this sequence: item-level descriptive analysis, dimensional scales using measures of central tendency and dispersion, correlations based on Spearman´ Rho to identify relationships, and finally, principal components analysis (PCA) to identify structure and latent factors.    Results: The results revealed a strong consensus on regulations, ethical principles and academic honesty, but also differences in trust, responsibility and formative impact. Two main factors emerged: one highly consistent factor combining norms, responsibility and impact, and another reflecting differences in honesty and trust. 
Conclusions: It is concluded that, while ethics in the use of GAI is generally accepted, it’s insufficiently understood and applied in assessment practice, revealing discrepancies and diverse positions evident, indicating that this is an area of critical analysis and further educational work.   

 

References

1. Aydın Ö, Karaarslan E. Emerging Computer Technologies 2. İzmir Akademi Dernegi; c2022. Chapter 5, OpenAI ChatGPT Generated Literature Review: Digital Twin in Healthcare; p. 22-31.

2. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention Is All You Need. In: von Luxburg U, Guyon I, Bengio S, Wallach H, Fergus R, editors. Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017 December 4-9; Long Beach, CA. New York: Curran Associates Inc.; c2017. p. 6000–6010.

3. Gerón A. Mãos à Obra: Aprendizado de Máquina com Scikit-Learn & TensorFlow. Rio de Janeiro: Alta Books; 2019.

4. Tramallino CP, Marize Zeni A. Avances y discusiones sobre el uso de inteligencia artificial (IA) en educación. Educación. 2024; 33(64):29-54.

5. Microsoft. Ai in Education. A Microsoft Specila Report. 2023 p. 32.

6. OpenAI. Jukebox: A Generative Model for Music. OpenAI. 2020.

7. Education M. AI in Education Report. Microsoft Education. 2023.

8. Francis N, Smith D. Using Generative Artificial Intelligence for Assessment: A Student Guide. Edge Hill Univ. 2023.

9. León J. El rol de la inteligencia artificial en la evaluación educativa: retos y oportunidades. Blog Aula Magna 2.0 Revistas Científicas de Educación en Red. 2023

10. Ng DTK, Leung JKL, Chu SKW, Qiao MS. Conceptualizing AI literacy: An exploratory review. Comput Educ Artif Intell. 2021.

11. Farrelly T, Baker N. Generative Artificial Intelligence: Implications and Considerations for Higher Education Practice. Educ Sci. 2023;13(11).

12. Moreno Olivos T. Evaluación del aprendizaje y para el aprendizaje: Reinventar la evaluación en el aula. México: Universidad Autónoma Metropolitana; 2016.

13. Black P, Wiliam D. Inside the black box: Raising standards through classroom assessment. Phi Delta Kappan. 2010; 92(1):81-90. http://dx.doi.org/10.1177/003172171009200119

14. Flores E, Borges G. Concepciones de evaluación del aprendizaje. Un análisis para la transformación de las prácticas evaluativas. Rev Panam Pedagog. 2024. 37:10-24. https://doi.org/10.21555/rpp.vi37.2796

15. Hernández M. Why has it been so difficult to transform evaluation practices of learning in the educational context? A critical essay on a pedagogical pathology still to be treated. Rev Electron Educ, 2017. http://dx.doi.org/10.15359/ree.21-1.21

16. Sullivan M, Kelly A, McLaughlan P. ChatGPT in higher education: Considerations for academic integrity and student learning. J Appl Learn Teach. 2023;6(1):31-40.

17. Singer P. Practical Ethics. United Kingdom: Cambridge University Press; 2011.

18. Popenici SAD, Kerr S. Explorando el impacto de la inteligencia artificial en la enseñanza y el aprendizaje en la educación superior. Res Pract Technol Enhanc Learn. 2017;12, https://doi.org/10.1186/s41039-017-0062-8

19. Silva M. Desafíos éticos de la evaluación educacional. Rev Enfoques Educ. 2017;5(1).

20. Gallent-Torres C, Zapata-González A, Ortego-Hernando JL. El impacto de la inteligencia artificial generativa en educación superior: una mirada desde la ética y la integridad académica. 2023; 29(2). https://doi.org/10.30827/relieve.v29i2.29134

21. VanderLinde G, Cury TM. El uso de inteligencia artificial y sus desafíos para la evaluación académica: una revisión de la literatura. Cuad Pedagog Univ. 2024; 21(41):126-37.

22. LOS40. Pronto afectará a todo el mundo: los centros denuncian el problema histórico que pone en riesgo la educación. LOS40. 2025.

23. Chan C. Exploring the Factors of “AI Guilt” Among Students – Are You Guilty of Using AI in Your Homework? Comput Soc. 2024. http://dx.doi.org/10.48550/arXiv.2407.10777

24. Consuegra-Fernández M, Sanz-Aznar J, Burguera-Serra J, Caballero J. ChatGPT: el dilema sobre la autoría de las actividades evaluables en educación universitaria. Rev Investig Educ. 2024;42(2). https://doi.org/10.6018/rie.565391

25. Chan CKY, Hu W. Students’ Voices on Generative AI: Perceptions, Benefits, and Challenges in Higher Education. Comput Soc. 2023; 20. https://doi.org/10.1186/s41239-023-00411-8

26. García O. Uso y Percepción de ChatGPT en la Educación Superior. Rev Investig En Tecnol Inf. 2023. 11(23):98-107. https://doi.org/10.36825/RITI.11.23.009

27. Mendoza JE, Jijón SJ, Jijón LF. Implicaciones éticas en el uso de inteligencia artificial en estudiantes universitarios. Polo Conoc. 2024; 9(3):1-29. https://doi.org/10.23857/pc.v9i3.6691

28. Villavicencio Santillan WR. Impacto ético de la IA en estudiantes universitarios: Desafíos en la adopción y su comprensión. Rev Conrado. 2024; 24(51):68-76.

29. Bearman M, Tai J, Dawson P, Boud D, Ajjawi R. Developing evaluative judgement for a time of generative artificial intelligence. Assess Eval High Educ, 2024; 49(6):893-905. http://dx.doi.org/10.1080/02602938.2024.2335321

30. Floridi L. Establishing the rules for building trustworthy AI. Nat Mach Intell, 2019. https://dx.doi.org/10.2139/ssrn.3858392

31. Surahman E, Wang TH. Academic dishonesty and trustworthy assessment in online learning: A systematic literature review. J Comput Assist Learn. 2022; 38(6):1535-53. https://dx.doi.org/10.1111/jcal.12708

32. Taddeo M, Sutcliffe D. The Ethics of Artificial Intelligence in Defence. In Conversation with Professor Mariarosaria Taddeo, Oxford Internet Institute discussing the ethics of AI in defence. Oxford Internet Institute. 2025.

33. Floridi L, Cowls J. A unifed framework of five principles for AI in society. HDSR. 2019; 535-545. https://doi.org/10.1162/99608f92.8cd550d1

34. Yang X, Cheon J, Cho M, Huang M, Cusson N. Undergraduate students’ perspectives of generative AI ethics. Int J Educ Technol High Educ. 2025; 22. https://doi.org/10.1186/s41239-025-00533-1

35. Wang G, Zhao J, Van Kleek M. Desafíos y oportunidades en la aplicación práctica de los principios éticos de la IA para niños. Nat Mach Intell. 2024; 6:265-270. Disponible en: https://doi.org/10.1038/s42256-024-00805-x

36. Fernández L, Vallejos C, Beltrán P. CHATGPT: ¿El futuro del Aprendizaje? Percepciones y uso entre estudiantes universitarios. Rev Educ Comun En Soc Conoc. 2024; 24(2):559-583. https://doi.org/10.30827/eticanet.v24i2.31026

37. Wang Z, Chai C, Li J, Lee V. Assessment of AI ethical reflection: the development and validation of the AI ethical reflection scale (AIERS) for university students. Int J Educ Technol High Educ. 2025; 22(1).

38. Schiff. Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. Int J Artif Intell Educ. 2021; 32:527-63. https://doi.org/10.1007/s40593-021-00270-2

39. George D, Mallery P. SPSS for Windows step by step: A simple guide and reference. 4th ed. Boston (MA): Allyn & Bacon; 2003.

40. R Core Team. R: A Language and Environment for Statistical Computing. Austria: R Foundation for Statistical Computing; 2024.

41. Miot HA. Análise de dados ordinais em estudos clínicos e experimentais. J Vasc Bras. 2020; 19.

42. Spearman C. The Proof and Measurement of Association between Two Things. Am J Psychol. 1904 ;15(1).

43. Weichert J, Kim D, Zhu Q, Kim J, Eldardiry H. Assessing computer science student attitudes towards AI ethics and policy. AI Ethics. 2025.

44. Baidoo D, Asamoah D, Amoako I, Mahama I. Exploring student perspectives on generative artificial intelligence in higher education learning. Discov Educ. 2024; 3(1). https://doi.org/10.1007/s44217-024-00173-z

45. Acosta B, Arbulú M, Arbulu C, Orellana M, Gutiérrez CR, Pizarro Romero JM, et al. Knowledge, attitudes, and perceived Ethics regarding the use of ChatGPT among generation Z university students. Int J Educ Integr. 2024; 20(1).

46. Jin S, Im K, Yoo M, Roll I, Seo K. Supporting students’ self-regulated learning in online learning using artificial intelligence applications. Int J Educ Technol High Educ. 2023; 20(1). https://doi.org/10.1186/s41239-023-00406-5

47. Zhou X, Teng D, Al-Samarraie H. The Mediating Role of Generative AI Self-Regulation on Students’ Critical Thinking and Problem-Solving. Educ Sci. 2024; 14(12).

48. Lin H, Chen Q. Artificial intelligence (AI) -integrated educational applications and college students’ creativity and academic emotions: students and teachers’ perceptions and attitudes. BMC Psychol. 2024; 12.

49. Nguyen A, Ngo HN, Hong Y, Dang B, Nguyen BPT. Ethical principles for artificial intelligence in education. Educ Inf Technol. 2023; 28(4):4221-41. https://doi.org/10.1007/s10639-022-11316-w

50. Laupichler M, Aster A, Haverkamp N, Raupach T. Desarrollo de la “Escala para la evaluación de la alfabetización en IA de los no expertos”: In análisis factorial exploratorio. Comput Educ Open. 2023; 12. https://doi.org/10.1016/j.chbr.2023.100338

51. Bianan NM, Eufracio FMG, Gareza AG, Panes RD, Cabatac RT. Exploring Attitude And Responsible Use of AI Among University Students. Open Access. 2025; 06(07).

Downloads

Published

2025-10-17

How to Cite

1.
Hernández Nodarse M, Fonseca Torres W, Ponce de León D, Villarroel Henríquez V, López AR. Ethics, generative artificial intelligence, and educational assessment: An analysis of university students’ perceptions. Salud, Ciencia y Tecnología [Internet]. 2025 Oct. 17 [cited 2025 Oct. 26];5:2359. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2359