Impact of Anhydrous Alcohol as a Complementary Fuel on Gasoline Engine Performance and Efficiency

Authors

DOI:

https://doi.org/10.56294/saludcyt20252298

Keywords:

Engine performance, Pollutant gas concentrations, Pollutant emission factors, Anhydrous alcohol, Alternative fuels

Abstract

Introduction: The growing interest in preserving the environment has driven the search for cleaner energy sources, including biofuels such as anhydrous alcohol, which can reduce the environmental impact of fossil fuel use without affecting engine performance. This project aimed to analyze the behavior of a gasoline engine when using anhydrous alcohol as a fuel additive.
Objective: This study evaluates the effects of anhydrous alcohol–gasoline blends (E5, E10, E15, and E20) on the mechanical performance and pollutant emissions of a Chevrolet Aveo 1.6 L spark-ignition engine under different test conditions.
Methods: The study was conducted on a Chevrolet Aveo vehicle equipped with an electronic injection system and a 1600 cc engine, evaluating its mechanical performance and emissions. Static tests, dynamic road tests, and laboratory analyses were carried out using conventional gasoline and blends containing 5%, 10%, 15%, and 20% anhydrous alcohol. Parameters such as power, torque, and emission levels were measured following the INEN 2204:2002 and 2203:99 standards.
Results: The results showed that the incorporation of anhydrous alcohol did not produce significant variations in power or torque but did reduce CO, HC, and CO₂ emissions, although with a slight increase in NOx, remaining within the established limits.
Conclusions: Anhydrous alcohol–gasoline blends up to 20% (v/v) can be used in conventional engines without performance penalties, while contributing to reductions in CO, HC, and CO₂ emissions. The trade-off is a moderate increase in NOx, which must be considered in emission control strategies. These findings support the potential of alcohol as a transitional fuel in urban transport under Latin American regulatory frameworks.

References

1. Sinigaglia T, Eduardo Santos Martins M, Cezar Mairesse Siluk J. Technological evolution of internal combustion engine vehicle: A patent data analysis. Applied Energy. enero de 2022;306:118003.

2. Huang Y, Unger N, Harper K, Heyes C. Global Climate and Human Health Effects of the Gasoline and Diesel Vehicle Fleets. GeoHealth. marzo de 2020;4(3):e2019GH000240.

3. CENGEL YA, BOLES MA. TERMODINÁMICA. Octava. Mexico: McGraw-Hill Education;

4. Ribeiro CB, Martins KG, Gueri MVD, Pavanello GP, Schirmer WN. Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines. Environ Sci Pollut Res. agosto de 2018;25(24):24192–200.

5. Feijo EAV, Fujisawa R. Emission Control Evolution of the 2.0 L Gasohol/Ethanol Engines in Brasil. En Sao Paulo, Brazil; 1992 [citado el 12 de octubre de 2025]. p. 921493. Disponible en: https://saemobilus.sae.org/papers/emission-control-evolution-20-l-gasohol-ethanol-engines-brasil-921493

6. Goldemberg J. The Brazilian biofuels industry. Biotechnology for Biofuels. 2008;1(1):6.

7. Kumar TS, Ashok B. Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions. Renewable and Sustainable Energy Reviews. diciembre de 2021;152:111702.

8. Tsai JH, Ko YL, Huang CM, Chiang HL. Effects of Blending Ethanol with Gasoline on the Performance of Motorcycle Catalysts and Airborne Pollutant Emissions. Aerosol Air Qual Res. 2019;9(12):2781–92.

9. Gajewski M, Wyrąbkiewicz S, Kaszkowiak J. Effects of Ethanol–Gasoline Blends on the Performance and Emissions of a Vehicle Spark-Ignition Engine. Energies. el 1 de julio de 2025;18(13):3466.

10. Boretti A. Towards 40% efficiency with BMEP exceeding 30bar in directly injected, turbocharged, spark ignition ethanol engines. Energy Conversion and Management. mayo de 2012;57:154–66.

11. Alexandrino K, Zalakeviciute R, Viteri F. Seasonal variation of the criteria air pollutants concentration in an urban area of a high-altitude city. Int J Environ Sci Technol. mayo de 2021;18(5):1167–80.

12. HEALTH AND CLIMATE CHANGE URBAN PROFILE Quito.

13. Vega D, Ocaña L, Parra Narváez R. Inventario de emisiones atmosféricas del tráfico vehicular en el Distrito Metropolitano de Quito. Año base 2012. Av Cienc Ing (Quito) [Internet]. el 30 de diciembre de 2015 [citado el 12 de octubre de 2025];7(2). Disponible en: https://revistas.usfq.edu.ec/index.php/avances/article/view/270

14. Escobar F. EVALUACIÓN UN MOTOR OTTO EXPERIMENTAL DE BAJA CILINDRADA.

15. Llanes Cedeño EA, Rocha-Hoyos JC, Peralta Zurita DB, Leguísamo Milla JC. Evaluación de emisiones de gases en un vehículo liviano a gasolina en condiciones de altura. Caso de estudio Quito, Ecuador. Enfoque UTE. el 19 de junio de 2018;9(2):149–58.

16. NTE INEN 2 203 2000 GESTIÓN AMBIENTAL AIRE VEHÍCULOS.pdf.

17. NTE INEN 2 204 2002 GESTIÓN AMBIENTAL AIRE VEHÍCULOS.pdf.

18. Mohammed MK, Balla HH, Al-Dulaimi ZMH, Kareem ZS, Al-Zuhairy MS. Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering. junio de 2021;25:100891.

19. Gajewski M, Wyrąbkiewicz S, Kaszkowiak J. Effects of Ethanol–Gasoline Blends on the Performance and Emissions of a Vehicle Spark-Ignition Engine. Energies. el 1 de julio de 2025;18(13):3466.

20. Zacarías A, Grijalva MR, Rubio JDJ, Romage G, Mena VY, Hernández R, et al. Improvement Efficiency and Emission Reduction in Used Cars for Developing Regions Using Gasoline–Bioethanol Blends. Energies. el 30 de enero de 2025;18(3):638.

21. Yang HH, Liu TC, Chang CF, Lee E. Effects of ethanol-blended gasoline on emissions of regulated air pollutants and carbonyls from motorcycles. Applied Energy. enero de 2012;89(1):281–6.

22. European Commission. Directorate General for Climate Action., ICF Consulting Ltd., CE Delft., ENSYS Energy., Vivid Economics. Impact of higher levels of bio components in transport fuels in the context of the Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998, relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC: final report. [Internet]. LU: Publications Office; 2017 [citado el 12 de octubre de 2025]. Disponible en: https://data.europa.eu/doi/10.2834/153655

23. Dinh Xuan T, Vu Minh D, Hoa BP, Duc KN, Nguyen Duy V. Influence of ethanol-gasoline blended fuel on performance and emission characteristics of the test motorcycle engine. Journal of the Air & Waste Management Association. el 3 de agosto de 2022;72(8):895–904.

24. University of Craiova, Romania, Tutunea D, Dumitru I. Experimental study on the effect of adding bioethanol in spark ignition engine. BUP-JAUTO [Internet]. el 30 de octubre de 2017 [citado el 12 de octubre de 2025];27(1). Disponible en: https://automotive.upit.ro/index_files/2017/2017_11_.pdf

25. Dhande DY, Sinaga N, Dahe KB. Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon. marzo de 2021;7(3):e06380.

26. Rimkus A, Pukalskas S, Mejeras G, Nagurnas S. Impact of Bioethanol Concentration in Gasoline on SI Engine Sustainability. Sustainability. el 14 de marzo de 2024;16(6):2397.

27. Instituto Ecuatoriano de Normalización (INEN). Norma Técnica INEN 2203:1999. Vehículos automotores. Control de gases de escape en condiciones de marcha mínima. Quito: INEN; 1999. Disponible en: https://www.normalizacion.gob.ec

28. Instituto Ecuatoriano de Normalización (INEN). Reglamento Técnico Ecuatoriano RTE INEN 089. Combustibles líquidos derivados de petróleo. Gasolina automotriz. Quito: INEN; 2008. Disponible en: https://www.normalizacion.gob.ec.

Downloads

Published

2025-10-20

How to Cite

1.
Freire Romero DR, Espín Lagos SM, Guamanquispe Toasa JP, Mena Campaña ES, Espín López VI. Impact of Anhydrous Alcohol as a Complementary Fuel on Gasoline Engine Performance and Efficiency. Salud, Ciencia y Tecnología [Internet]. 2025 Oct. 20 [cited 2025 Oct. 31];5:2298. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2298