Bibliometric Analysis Of The Use Of Learning Videos In Science Education: Trends, Impact, And Future Potential

Authors

DOI:

https://doi.org/10.56294/saludcyt20252242

Keywords:

bibliometric analysis, learning videos, science education

Abstract

Introduction: Instructional videos play a vital role in science education because they make abstract concepts more understandable and engaging. However, few bibliometric studies have mapped their global research development, creating a gap in understanding trends, impact, and future directions. This study addresses that gap to highlight the importance of video-based learning as a transformative educational tool.
Methods: A bibliometric analysis was conducted using 130 documents indexed in Scopus between 1971 and 2024. The articles were identified through Publish or Perish, filtered for relevance, and analyzed using VOSviewer. Data were examined across publication trends, affiliations, country contributions, author keywords, collaborations, citation impact, and emerging themes.
Results: Publications increased sharply after 2010, reflecting growing attention to technology-supported science education. The United States, Indonesia, and Australia were the leading contributors, with New York University and Stanford University as dominant institutions. Common keywords included teaching, education, and science learning. Collaboration networks showed strong links among authors such as Goldman and Pea. The most cited article (Derry et al., 2010; 734 citations) emphasized the methodological and ethical challenges of video research. Future potential areas include AI-driven personalization, gamification, VR/AR-based learning, teacher professional development, collaborative learning, and cross-country comparisons.
Conclusions: Instructional videos have become a critical component of science education, with significant contributions across countries and institutions. The findings underline their transformative impact on teaching and learning while identifying promising directions for future research. This study contributes to filling gaps in the literature and guiding scholars toward innovative, technology-integrated approaches to science education.

References

1. Hermita N, Putra ZH, Alim JA, Tang J, Wijaya TT, Li L, et al. The Hungry Ant: Development of Video-Based Learning on Polyhedron. Int J Interact Mob Technol. 2021;15(17):18–32. DOI: https://doi.org/10.3991/ijim.v15i17.23099

2. Rasiman, Prasetyowati D, Kartinah. Development of learning videos for junior high school math subject to enhance mathematical reasoning. Int J Educ Pract. 2020;8(1):18–25. DOI: https://doi.org/10.18488/journal.61.2020.81.18.25

3. Ultra Gusteti M, Rifandi R, Gustya Manda T, Putri M. The development of 3D animated video for mathematics learning in elementary schools. J Phys Conf Ser. 2021;1940(1). DOI: https://doi.org/10.1088/1742-6596/1940/1/012098

4. Derry SJ, Pea RD, Barron B, Engle RA, Erickson F, Goldman R, et al. Conducting video research in the learning sciences: Guidance on selection, analysis, technology, and ethics. J Learn Sci. 2010;19(1):3–53. DOI: https://doi.org/10.1080/10508400903452884

5. Hafner CA, Miller L. Fostering Learner Autonomy in English for Science. Lang Learn Technol. 2011;15(3):68–86. DOI: https://doi.org/10.64152/10125/44263

6. Rosenthal S. Motivations to seek science videos on YouTube: free-choice learning in a connected society. Int J Sci Educ Part B Commun Public Engagem. 2018;8(1):22–39. DOI: https://doi.org/10.1080/21548455.2017.1371357

7. Sanchez CA. Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychon Bull Rev. 2012;19(1):58–65. DOI: https://doi.org/10.3758/s13423-011-0177-7

8. Slemmons K, Anyanwu K, Hames J, Grabski D, Mlsna J, Simkins E, et al. The Impact of Video Length on Learning in a Middle-Level Flipped Science Setting: Implications for Diversity Inclusion. J Sci Educ Technol. 2018;27(5):469–79. DOI: https://doi.org/10.1007/s10956-018-9736-2

9. Caldeiro-Pedreira MC, Renés-Arellano P, Castillo-Abdul B, Aguaded I. YouTube videos for young children: an exploratory study. Digit Educ Rev. 2022;(41):32–43. DOI: https://doi.org/10.1344/der.2022.41.32-43

10. Morris JR, Hughes EM, Stocker JD, Davis ES. Using Video Modeling, Explicit Instruction, and Augmented Reality to Teach Mathematics to Students With Disabilities. Learn Disabil Q. 2022;45(4):306–19. DOI: https://doi.org/10.1177/07319487211040470

11. Hwang GJ, Xie H, Wah BW, Gašević D. Vision, challenges, roles and research issues of Artificial Intelligence in Education. Vol. 1, Computers and Education: Artificial Intelligence. Elsevier; 2020. p. 100001. DOI: https://doi.org/10.1016/j.caeai.2020.100001

12. Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020;17(12):e1003501. DOI: https://doi.org/10.1371/journal.pmed.1003501

13. Mayer RE. Based principles for designing multimedia instruction. Copyr Other Leg Not. 2014;59.

14. Li X, Sun X, Meng Y, Liang J, Wu F, Li J. Dice loss for data-imbalanced NLP tasks. arXiv Prepr arXiv191102855. 2019; DOI: https://doi.org/10.18653/v1/2020.acl-main.45

15. Ali S. Impacts of watching videos on academic performance at university level. Eur J Educ Stud. 2019;

16. Nahar K, Chowdhury R. Effectiveness of flipped classroom model in distance learning. In: Proceedings of the 30th Annual Conference for the Australasian Association for Engineering Education (AAEE 2019). 2019.

17. Estriegana R, Medina-Merodio JA, Barchino R. Student acceptance of virtual laboratory and practical work: An extension of the technology acceptance model. Comput Educ. 2019;135:1–14. DOI: https://doi.org/10.1016/j.compedu.2019.02.010

18. Noetel M, Griffith S, Delaney O, Sanders T, Parker P, del Pozo Cruz B, et al. Video improves learning in higher education: A systematic review. Rev Educ Res. 2021;91(2):204–36. DOI: https://doi.org/10.3102/0034654321990713

19. Selwyn N. Education and technology: Key issues and debates. Bloomsbury Publishing; 2021. DOI: https://doi.org/10.5040/9781350145573

20. Selwyn N. The future of AI and education: Some cautionary notes. Eur J Educ. 2022;57(4):620–31. DOI: https://doi.org/10.1111/ejed.12532

21. Selwyn N. Digital degrowth: Toward radically sustainable education technology. Learn Media Technol. 2024;49(2):186–99. DOI: https://doi.org/10.1080/17439884.2022.2159978

22. Selwyn N, Hillman T, Bergviken-Rensfeldt A, Perrotta C. Making sense of the digital automation of education. Postdigital Sci Educ. 2023;5(1):1–14. DOI: https://doi.org/10.1007/s42438-022-00362-9

23. Sweller J, Van Merriënboer JJG, Paas F. Cognitive architecture and instructional design: 20 years later. Educ Psychol Rev. 2019;31(2):261–92. DOI: https://doi.org/10.1007/s10648-019-09465-5

24. Paivio A. Intelligence, dual coding theory, and the brain. Intelligence. 2014;47:141–58. DOI: https://doi.org/10.1016/j.intell.2014.09.002

25. Paivio A. Mind and its evolution: A dual coding theoretical approach. Psychology press; 2014. DOI: https://doi.org/10.4324/9781315785233

26. Brame C. Active learning. Vanderbilt Univ Cent Teach. 2016;1–6.

27. Biel R, Brame CJ. Traditional versus online biology courses: Connecting course design and student learning in an online setting. J Microbiol Biol Educ. 2016;17(3):417–22. DOI: https://doi.org/10.1128/jmbe.v17i3.1157

28. Guo S, Huang W, Zhang H, Zhuang C, Dong D, Scott MR, et al. Curriculumnet: Weakly supervised learning from large-scale web images. In: Proceedings of the European conference on computer vision (ECCV). 2018. p. 135–50. DOI: https://doi.org/10.1007/978-3-030-01249-6_9

29. Luckin R, George K, Cukurova M. AI for school teachers. CRC Press; 2022. DOI: https://doi.org/10.1201/9781003193173

30. Cukurova M, Khan-Galaria M, Millán E, Luckin R. A learning analytics approach to monitoring the quality of online one-to-one tutoring. J Learn Anal. 2022;9(2):105–20. DOI: https://doi.org/10.18608/jla.2022.7411

31. Roscoe RD, Salehi S, Nixon N, Worsley M, Piech C, Luckin R. Inclusion and equity as a paradigm shift for artificial intelligence in education. In: Artificial Intelligence in STEM Education. CRC Press; 2022. p. 359–74. DOI: https://doi.org/10.1201/9781003181187-28

32. Chaudhry MA, Cukurova M, Luckin R. A transparency index framework for AI in education. In: International conference on artificial intelligence in education. Springer; 2022. p. 195–8. DOI: https://doi.org/10.35542/osf.io/bstcf

33. Luckin R, Cukurova M, Kent C, Du Boulay B. Empowering educators to be AI-ready. Comput Educ Artif Intell. 2022;3:100076. DOI: https://doi.org/10.1016/j.caeai.2022.100076

34. Wu Q, Osco LP. samgeo: A Python package for segmenting geospatial data with the Segment Anything Model (SAM). J Open Source Softw. 2023;8(89):5663. DOI: https://doi.org/10.21105/joss.05663

35. Makransky G, Petersen GB. The cognitive affective model of immersive learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educ Psychol Rev. 2021;33(3):937–58. DOI: https://doi.org/10.1007/s10648-020-09586-2

36. Syarifuddin H, Riza Y, Harisman Y, Ismail RN. Students’ Response to the Use of a Flipped Learning Model (FLM) in Abstract Algebra Course. In: Unima International Conference on Social Sciences and Humanities (UNICSSH 2022). Atlantis Press; 2023. p. 1435–41. DOI: https://doi.org/10.2991/978-2-494069-35-0_172

37. Cheng MT, Chen JH, Chu SJ, Chen SY. The use of serious games in science education: a review of selected empirical research from 2002 to 2013. J Comput Educ. 2015;2(3):353–75. DOI: https://doi.org/10.1007/s40692-015-0039-9

38. Forbes H, Oprescu FI, Downer T, Phillips NM, McTier L, Lord B, et al. Use of videos to support teaching and learning of clinical skills in nursing education: A review. Nurse Educ Today. 2016;42:53–6. DOI: https://doi.org/10.1016/j.nedt.2016.04.010

39. Ramachandran R, Sparck EM, Levis-Fitzgerald M. Investigating the Effectiveness of Using Application-Based Science Education Videos in a General Chemistry Lecture Course. J Chem Educ. 2019;96(3):479–85. DOI: https://doi.org/10.1021/acs.jchemed.8b00777

40. Slimi Z, Carballido BV. Systematic Review: AI’s Impact on Higher Education - Learning, Teaching, and Career Opportunities. TEM J. 2023;12(3):1627–37. DOI: https://doi.org/10.18421/TEM123-44

41. Fauziah SP, SUHERMAN I, FAUZIAH N, SHAFARIAH, SITI NUR RAHMAWATI HH. THE BIBLIOMETRIC ANALYSIS: RESEARCH DEVELOPMENT OF TECHNOLOGICAL BASED LEARNING MANAGEMENT USING VOSVIEWER. J Eng Sci Technol. 2023;3:113–20.

42. Levidze M. Mapping the research landscape: A bibliometric analysis of e-learning during the COVID-19 pandemic. Heliyon. 2024;10(13):e33875. DOI: https://doi.org/10.1016/j.heliyon.2024.e33875

43. Sobral SR. Two decades of research in e-learning: A deep bibliometric analysis. Int J Inf Educ Technol. 2021;11(9):398–404. DOI: https://doi.org/10.18178/ijiet.2021.11.9.1541

44. Martins J, Gonçalves R, Branco F. A bibliometric analysis and visualization of e-learning adoption using VOSviewer. Univers Access Inf Soc. 2022;23(3):1177–91. DOI: https://doi.org/10.1007/s10209-022-00953-0

45. Papanastasiou G, Drigas A, Skianis C, Lytras M, Papanastasiou E. Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills. Virtual Real. 2019;23(4):425–36. DOI: https://doi.org/10.1007/s10055-018-0363-2

46. Brame CJ, Biel R. Test-enhanced learning: The potential for testing to promote greater learning in undergraduate science courses. CBE Life Sci Educ. 2015;14(2):1–12. DOI: https://doi.org/10.1187/cbe.14-11-0208

47. Woldemariam DY, Ayele HS, Kedanemariam DA, Mengistie SM, Beyene BB. Effects of technology-assisted chemistry instruction on students’ achievement, attitude, and retention capacity: A systematic review. Educ Inf Technol. 2023;(December). DOI: https://doi.org/10.1007/s10639-023-12411-2

48. Arnellis A, Syarifuddin H, Ismail RN. Optimizing students’ mathematical critical and creative thinking skills through the flip-a-team model with e-learning. Al-Jabar J Pendidik Mat. 2023;14(1):133–40. DOI: https://doi.org/10.24042/ajpm.v14i1.16904

49. Ismail RN, Fauzan A, Arnawa M, Armiati A. Pengembangan Hypothetical Learning Trajectory Berbasis Realistics Mathematics Education Geometri Transformasi pada Topik Rotasi. Lattice J J Math Educ Appl. 2021;1(1):74–90. DOI: https://doi.org/10.30983/lattice.v1i1.4651

50. Agbo FJ, Sanusi IT, Oyelere SS, Suhonen J. Application of virtual reality in computer science education: A systemic review based on bibliometric and content analysis methods. Educ Sci. 2021;11(3). DOI: https://doi.org/10.3390/educsci11030142

51. Moreno-Guerrero AJ, de los Santos PJ, Pertegal-Felices ML, Costa RS. Bibliometric study of scientific production on the term collaborative learning in web of science. Sustain. 2020;12(14):1–19. DOI: https://doi.org/10.3390/su12145649

52. Rojas-Sánchez MA, Palos-Sánchez PR, Folgado-Fernández JA. Systematic literature review and bibliometric analysis on virtual reality and education. Vol. 28, Education and Information Technologies. Springer US; 2023. 155–192 p. DOI: https://doi.org/10.1007/s10639-022-11167-5

53. Arsyad A. Media Pembelajaran. 2014;23–35.

54. Moral-muñoz JA, Herrera-viedma E, Santisteban-espejo A, Cobo MJ, Herrera-viedma E, Santisteban-espejo A, et al. 77520-Texto del artículo-249046-3-10-20200304.pdf. El Prof la informa- ción. 2020;29:1–20. DOI: https://doi.org/10.3145/epi.2020.ene.03

55. Pirri S, Lorenzoni V, Turchetti G. Scoping review and bibliometric analysis of Big Data applications for Medication adherence: An explorative methodological study to enhance consistency in literature. BMC Health Serv Res. 2020;20(1):1–23. DOI: https://doi.org/10.1186/s12913-020-05544-4

56. Fahimnia B, Sarkis J, Davarzani H. Green supply chain management: A review and bibliometric analysis. Int J Prod Econ. 2015;162:101–14. DOI: https://doi.org/10.1016/j.ijpe.2015.01.003

57. Julius R, Halim MSA, Hadi NA, Alias AN, Khalid MHM, Mahfodz Z, et al. Bibliometric Analysis of Research in Mathematics Education using Scopus Database. Eurasia J Math Sci Technol Educ. 2021;17(12). DOI: https://doi.org/10.29333/ejmste/11329

58. Rafiq AA, Triyono MB, Djatmiko IW, Wardani R, Köhler T. Mapping the Evolution of Computational Thinking in Education: A Bibliometrics Analysis of Scopus Database from 1987 to 2023. Informatics Educ. 2023;22(4):691–724. DOI: https://doi.org/10.15388/infedu.2023.29

59. Gusenbauer M, Haddaway NR. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res Synth Methods. 2020;11(2):181–217. DOI: https://doi.org/10.1002/jrsm.1378

60. Barros AG, Nascimento DC de O, Aguiar C de J, Almeida FM de. Economic Viability in Photovoltaic Panels: a Systematic Review in Capes Periodical Portal and Scopus Database. Int J Adv Eng Res Sci. 2018;5(7):311–22. DOI: https://doi.org/10.22161/ijaers.5.7.39

61. Kartika H, Budiarto MT, Fuad Y, Bonyah E. Bibliometrics Analysis of Research on Argumentation in Mathematics Education. Int J Educ Math Sci Technol. 2023;11(5):1346–65. DOI: https://doi.org/10.46328/ijemst.2904

62. Andrade-Arenas L, Bogdanovich MMM, Hernández Celis D, Jaico KR, Peña GBA. University learning style model: Bibliometrics and systematic literature review. Int J Eval Res Educ. 2023;12(4):2302–15. DOI: https://doi.org/10.11591/ijere.v12i4.25859

63. Angraini LM, Susilawati A, Noto MS, Wahyuni R, Andrian D. Augmented Reality for Cultivating Computational Thinking Skills in Mathematics Completed with Literature Review, Bibliometrics, and Experiments for Students. Indones J Sci Technol. 2024;9(1):225–60. DOI: https://doi.org/10.17509/ijost.v9i1.67258

64. Scopus Database [Internet]. Available from: https://www.scopus.com/

65. Al-Samarraie H, Shamsuddin A, Alzahrani AI. A flipped classroom model in higher education: a review of the evidence across disciplines. Vol. 68, Educational Technology Research and Development. 2020. 1017–1051 p. DOI: https://doi.org/10.1007/s11423-019-09718-8

66. Bayrak A, Aslanci S. Realistic Mathematics Education: A Bibliometric Analysis. Shanlax Int J Educ. 2022;10(4):52–62. DOI: https://doi.org/10.34293/education.v10i4.5174

67. Cansız Aktaş M. Problem-posing research in mathematics education: A bibliometric analysis. J Pedagog Res. 2022;6(4):217–33. DOI: https://doi.org/10.33902/JPR.202217414

68. Karampelas K. Examining the relationship between TPACK and STEAM through a bibliometric study. Eur J Sci Math Educ. 2023;11(3):488–98. DOI: https://doi.org/10.30935/scimath/12981

69. Utami N, Setiawan A, Hamidah I. a Bibliometric Analysis of Augmented Reality in Higher Education. J Eng Sci Technol. 2023;18(3):1599–613.

70. Yuliyanto R, Andriyati R, Srimaryani S. Overview of the TPACK Model in Digital Learning: A Bibliometric Analysis. Int J Multicult Multireligious Underst. 2023;10(10):37. DOI: https://doi.org/10.18415/ijmmu.v10i10.5084

71. Gandasari D, Tjahjana D, Dwidienawati D, Sugiarto M. Bibliometric and visualized analysis of social network analysis research on Scopus databases and VOSviewer. Cogent Bus Manag. 2024;11(1). DOI: https://doi.org/10.1080/23311975.2024.2376899

72. López S, Yepes V. Visualizing the Future of Knowledge Sharing in SMEs in the Construction Industry: A VOSviewer Analysis of Emerging Trends and Best Practices. Adv Civ Eng. 2024;2024. DOI: https://doi.org/10.1155/2024/6657677

73. Zawacki-Richter O, Marín VI, Bond M, Gouverneur F. Systematic review of research on artificial intelligence applications in higher education–where are the educators? Int J Educ Technol High Educ. 2019;16(1):1–27. DOI: https://doi.org/10.1186/s41239-019-0171-0

74. Bond M. Schools and emergency remote education during the COVID-19 pandemic: A living rapid systematic review. Asian J Distance Educ. 2021;15(2):191–247.

75. Bond M, Bedenlier S, Marín VI, Händel M. Emergency remote teaching in higher education: Mapping the first global online semester. Int J Educ Technol High Educ. 2021;18(1):50. DOI: https://doi.org/10.1186/s41239-021-00282-x

76. Zawacki-Richter O, Latchem C. Exploring four decades of research in Computers & Education. Comput Educ. 2018;122:136–52. DOI: https://doi.org/10.1016/j.compedu.2018.04.001

77. Basri NEA, Azman NA, Ahmad IK, Suja F, Jalil NAA, Amrul NF. Potential applications of frass derived from black soldier fly larvae treatment of food waste: A review. Foods. 2022;11(17):2664. DOI: https://doi.org/10.3390/foods11172664

78. Zhou J, Sun H, Wang Z, Cong W, Wang J, Zeng M, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition). Liver cancer. 2020;9(6):682–720. DOI: https://doi.org/10.1159/000509424

79. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):1–23. DOI: https://doi.org/10.1186/s40779-020-0233-6

80. Ismail RN, Fauzan A, Yerizon. Analysis of students’ motivation and self-regulation profiles in online mathematics learning junior high school at Padang city. In: AIP Conference Proceedings. AIP Publishing LLC; 2023. p. 60025. DOI: https://doi.org/10.1063/5.0122429

81. Ismail RN, Fauzan A. Exploring Self-Regulated Learning and Their Impact on Students’ Mathematical Communication Skills on the Topic of Number Patterns With the Blended Learning System. J High Educ Theory Pract. 2023;23(16). DOI: https://doi.org/10.33423/jhetp.v23i16.6477

82. Iswari M, Afdal A, Nurhastuti N, Syahputra Y, Ismail RN. Validation of Career Planning Instrument for Deaf (CPID): Rasch Model Analysis. In: AIP Conference Proceedings. AIP Publishing; 2023. DOI: https://doi.org/10.1063/5.0166390

83. Ismail RN, Fauzan A, Arnawa IM. Analysis of student learning independence as the basis for the development of digital book creations integrated by realistic mathematics. In: Journal of Physics: Conference Series. IOP Publishing; 2021. p. 12041. DOI: https://doi.org/10.1088/1742-6596/1742/1/012041

84. Fauzan A, Nasuha R, Zafirah A. The Roles of Learning Trajectory in Teaching Mathematics Using RME Approach. In: Proceedings of the 14th International Congress on Mathematical Education: Volume II: Invited Lectures. World Scientific; 2024. p. 197–209. DOI: https://doi.org/10.1142/9789811287183_0013

85. Ismail RN, Arnawa IM. Improving StudentsReasoning and Communication Mathematical Ability by Applying Contextual Approach of The 21st Century at A Junior High School In Padang. In: 2nd International Conference on Mathematics and Mathematics Education 2018 (ICM2E 2018). Atlantis Press; 2018. p. 144–9. DOI: https://doi.org/10.2991/icm2e-18.2018.34

86. Wang C, Wang Z, Wang G, Lau JYN, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther. 2021;6(1):114. DOI: https://doi.org/10.1038/s41392-021-00527-1

87. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95. DOI: https://doi.org/10.1093/nar/gkaa971

88. Ma J, Li Y, Grundish NS, Goodenough JB, Chen Y, Guo L, et al. The 2021 battery technology roadmap. J Phys D Appl Phys. 2021;54(18):183001. DOI: https://doi.org/10.1088/1361-6463/abd353

89. Chang A. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19—National poison data system, United States, January 1, 2020–March 31, 2020. MMWR Morb Mortal Wkly Rep. 2020;69. DOI: https://doi.org/10.15585/mmwr.mm6916e1

90. Bellini G, Bick D, Bonfini G, Bravo D, Caccianiga B, Calaprice F, et al. SOX: Short distance neutrino Oscillations with BoreXino. J High Energy Phys. 2013;2013(8):1–14. DOI: https://doi.org/10.1007/JHEP08(2013)038

91. Huang B, Hew KF. Implementing a theory-driven gamification model in higher education flipped courses: Effects on out-of-class activity completion and quality of artifacts. Comput Educ. 2018;125:254–72. DOI: https://doi.org/10.1016/j.compedu.2018.06.018

92. Gee J, Gee JP. Social linguistics and literacies: Ideology in discourses. Routledge; 2007. DOI: https://doi.org/10.4324/9780203944806

93. Ekezie FGC, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends food Sci Technol. 2017;69:46–58. DOI: https://doi.org/10.1016/j.tifs.2017.08.007

94. Errea I, Calandra M, Mauri F. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides. Phys Rev B. 2014;89(6):64302. DOI: https://doi.org/10.1103/PhysRevB.89.064302

95. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5(1):161–9. DOI: https://doi.org/10.4161/viru.26187

96. Friedlingstein P, Jones MW, O’sullivan M, Andrew RM, Hauck J, Peters GP, et al. Global carbon budget 2019. Earth Syst Sci data. 2019;11(4):1783–838. DOI: https://doi.org/10.5194/essd-11-1783-2019

97. Tan CY, Hew KF. The impact of digital divides on student mathematics achievement in Confucian heritage cultures: A critical examination using PISA 2012 data. Int J Sci Math Educ. 2019;17(6):1213–32. DOI: https://doi.org/10.1007/s10763-018-9917-8

98. Tan CY, Hew KF. Information technology, mathematics achievement and educational equity in developed economies. Educ Stud. 2017;43(4):371–90. DOI: https://doi.org/10.1080/03055698.2016.1277137

Downloads

Published

2025-09-26

How to Cite

1.
Maielfi D, Kharisma A, Nurpatri Y, Hayati R, Ultra Gusteti M, Sepri D. Bibliometric Analysis Of The Use Of Learning Videos In Science Education: Trends, Impact, And Future Potential. Salud, Ciencia y Tecnología [Internet]. 2025 Sep. 26 [cited 2025 Nov. 28];5:2242. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2242