How Does Pre-Lab Virtual Laboratory Affect Students' Self-Efficacy and Understanding Mendel's Law?

Authors

DOI:

https://doi.org/10.56294/saludcyt20252174

Keywords:

Genetics education, Virtual laboratory, Mendel's Law, Self-efficacy, Pre-lab preparation, D. melanogaster, Project-based learning (PBL)

Abstract

Introduction: Genetics learning presents challenges, requiring a strong understanding of theoretical concepts and practical skills. Mendel's Laws are key concepts that are difficult to grasp without practical experience. 
Objective: This study investigated how virtual laboratories influence students' learning readiness, self-efficacy, and conceptual understanding of Mendel's Laws using D. melanogaster as a model.
Methods: The study used a quantitative, quasi-experimental design with pre-test and post-test control groups. One hundred twenty-two undergraduate biology education students participated. The study employed three instruments: a pre-lab readiness test, a self-efficacy questionnaire, and a Mendelian concept comprehension test. The experimental group (n = 57) received Project-Based Learning (PBL) combined with virtual lab simulations, while the control group (n = 65) received conventional PBL.
Results: Analysis revealed that the experimental group scored significantly higher than the control group on all measures (p < 0,05). The virtual laboratory improved students' conceptual and procedural readiness, boosted their confidence in experiments, and reinforced their understanding of Mendel's segregation and independent assortment principles.
Conclusions: The virtual laboratory enhanced genetics learning, especially in preparing students for accurate experimental tasks. The results suggest that virtual simulations are valuable in genetics education, offering practical insights for educators to adopt in laboratory courses.

References

1. Castro-Faix M, Duncan RG. Cross-sectional study of students’ molecular explanations of inheritance patterns. Sci Educ [Internet] 2022;106(2):412–47. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119418642&doi=10.1002%2fsce.21692&partnerID=40&md5=8c62fea24541d76340934ae58b445f55

2. Riera AB, Valls Bautista C. Implementación y validación de una gincana para aprender genética en educación secundaria Implementation and validation of a gymkhana to learn genetics in secondary education [Internet]. Available from: https://recyt.fecyt.es/index.php/retos/index

3. Castro-Faix M, Duncan RG. Cross-Sectional Study of Students’ Molecular Explanations of Inheritance Patterns [Internet]. In: Proceedings of International Conference of the Learning Sciences, ICLS. 2021. page 91–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182260307&partnerID=40&md5=480fbf5c14bad2c6c2cec0d90cb64d4b

4. Xhetani M, Lapi K. High School Students’ Attitudes Towards Learning Genetics and Belief in Genetic Determinism [Internet]. In: Proceedings of International Conference on Research in Education and Science. 2023. page 1505–13.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184308646&partnerID=40&md5=654631564a959fb4031a8df9ba279a22

5. Buske R, Bartholomei-Santos ML. What is worse: to mislearn or to forget? Knowledge about Mendelian inheritance among high school senior students. J Biol Educ [Internet] 2021;55(5):461–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077165913&doi=10.1080%2f00219266.2019.1707260&partnerID=40&md5=84b1538f41a9fcaacf17a97c2fe183b9

6. Schmid KM, Lee D, Weindling M, Syed A, Agyemang SLY, Donovan B, et al. Mendelian or Multifactorial? Current Undergraduate Genetics Assessments Focus on Genes and Rarely Include the Environment. J Microbiol Biol Educ [Internet] 2022;23(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144205993&doi=10.1128%2fjmbe.00093-22&partnerID=40&md5=badee904e41d49c0575c8bc977d2b8cc

7. Zudaire I, Napal Fraile M. Exploring the Conceptual Challenges of Integrating Epigenetics in Secondary-Level Science Teaching. Res Sci Educ [Internet] 2021;51(4):957–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077528359&doi=10.1007%2fs11165-019-09899-5&partnerID=40&md5=737772fdd8ac15b71826609dbe080bc8

8. Raushan J, Doktorkhan A, Asiyya M, Makhabbat A, Zhazira Z. Students’ independent work in genetics in a multilingual education setting. Journal of Turkish Science Education [Internet] 2024;21(3):579–98. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205140762&doi=10.36681%2ftused.2024.031&partnerID=40&md5=185f3a531b4aec4fcb323b0455594b56

9. Motulsky AG. Formal genetics of humans: Modes of inheritance [Internet]. In: Vogel and Motulsky’s Human Genetics: Problems and Approaches (Fourth Edition). 2010. page 165–209.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920449321&doi=10.1007%2f978-3-540-37654-5_6&partnerID=40&md5=86a5441acb6912f2a690f7dddf4e2433

10. Wang M, Xu S. Statistics of Mendelian segregation—A mixture model. Journal of Animal Breeding and Genetics [Internet] 2019;136(5):341–50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065187112&doi=10.1111%2fjbg.12394&partnerID=40&md5=07b24226c0e21ce6686981b2ccf9c5a8

11. He FH, Zhu BY, Gao F, Li SS, Li NH. [Research progress on the cloning of Mendel’s gene in pea (Pisum sativum L.) and its application in genetics teaching]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji [Internet] 2013;35(7):931–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884303004&doi=10.3724%2fsp.j.1005.2013.00931&partnerID=40&md5=f79b4e37ddbadf8bc883c56112251b4e

12. Lewis R. Mendel’s Laws [Internet]. In: Brenner’s Encyclopedia of Genetics: Second Edition. 2013. page 357–63.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043236934&doi=10.1016%2fB978-0-12-374984-0.00926-8&partnerID=40&md5=7ae74b95117bff944c07195c734c8b1c

13. Das SS. Mendel paved the path toward understanding genetic diseases. Egyptian Journal of Medical Human Genetics [Internet] 2022;23(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137040072&doi=10.1186%2fs43042-022-00339-0&partnerID=40&md5=b491f224d29212b6b22c82144bd60f05

14. Meti VK V, Soori C, Talli A, Giriyapur AC, Revankar P, Siddhalingeshwar IG. A Project-Based Learning Approach to Measurement Systems Laboratory for Undergraduate Students. Journal of Engineering Education Transformations [Internet] 2024;37(4):36–45. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197246926&doi=10.16920%2fjeet%2f2024%2fv37i4%2f24157&partnerID=40&md5=88d703f3653ff97ab1c667a58bead8f9

15. Cooper LA, Kotys-Schwartz D. Designing the Project-Based Learning Experience using Motivation Theory [Internet]. In: ASEE Annual Conference and Exposition, Conference Proceedings. 2022. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138267093&partnerID=40&md5=63cda033408c935ed628cd477bbf2b0f

16. Tierney G, Adams C, Ward S. In the Service of Student Engagement: Project-Based Learning Classrooms and Teacher Practices. J Exp Educ [Internet] 2025;93(1):38–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179988710&doi=10.1080%2f00220973.2023.2287446&partnerID=40&md5=cd1159b70aae03aa34305d35fdb98521

17. Agustin M, Buroidah H, Hayuana W, Fahmi MIN, Maghfiroh H, Choirunisa N, et al. Implementation of PjBL learning model combined with genetics project guidebook II to improve biology students’ critical thinking skills [Internet]. In: AIP Conference Proceedings. 2024. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194703038&doi=10.1063%2f5.0215202&partnerID=40&md5=4e3b60efe473dda50b14d2cec02fd19a

18. Alozie N, Eklund J, Rogat A, Krajcik J. Genetics in the 21st century: The benefits & challenges of incorporating a project-based genetics unit in biology classrooms. American Biology Teacher [Internet] 2010;72(4):225–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951200312&doi=10.1525%2fabt.2010.72.4.5&partnerID=40&md5=96c24538bdea42f7b4814f5c2fd75154

19. Williams CT, Rudge DW. Mendel and the Nature of Science. American Biology Teacher [Internet] 2015;77(7):492–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944903914&doi=10.1525%2fabt.2015.77.7.3&partnerID=40&md5=0a370e1fd92a28dbde4e56e6acbad083

20. Maghfiroh H, Hayuana W, Fahmi MIN, Buroidah H, Agustin M, Choirunisa N, et al. Revealing the profile of undergraduate students’ understanding of mendelian inheritance concepts [Internet]. In: AIP Conference Proceedings. 2024. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194760676&doi=10.1063%2f5.0215205&partnerID=40&md5=a9c76586b94bc6048aadb3d53c79a9d9

21. Roote J, Prokop A. How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) [Internet] 2013;3(2):353–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880003958&doi=10.1534%2fg3.112.004820&partnerID=40&md5=d915a7b44d92cadea74c149316359631

22. Popis M, Borowiec B, Jankowski M. Drosophila melanogaster research: History, breakthrough and perspectives. Medical Journal of Cell Biology [Internet] 2018;6(4):182–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060365413&doi=10.2478%2facb-2018-0028&partnerID=40&md5=ce802f75ea1f85b0e24f1ef8e165d2a9

23. Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatric Nephrology [Internet] 2023;38(12):3875–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159302813&doi=10.1007%2fs00467-023-05996-w&partnerID=40&md5=6603ba4ffcbec8c7b59ce31820ef79ec

24. Regan JL. Drosophila melanogaster: Genome evolution, behavior and economic importance [Internet]. 2014. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84953401359&partnerID=40&md5=3db17b019a39f7fd1504eeb296ffcb98

25. Strome S, Bhalla N, Kamakaka R, Sharma U, Sullivan W. Clarifying Mendelian vs non-Mendelian inheritance. Genetics [Internet] 2024;227(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197973502&doi=10.1093%2fgenetics%2fiyae078&partnerID=40&md5=87fb9b8ea2f360734d4ddec89573fcf6

26. Mohr SE, Perrimon N. Drosophila melanogaster: A simple system for understanding complexity. DMM Disease Models and Mechanisms [Internet] 2019;12(10). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072696346&doi=10.1242%2fdmm.041871&partnerID=40&md5=49a9778bc759bf5243e7cf0da0f12105

27. Sussmilch FC, Ross JJ, Reid JB. Mendel: From genes to genome. Plant Physiol [Internet] 2022;190(4):2103–14. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142941204&doi=10.1093%2fplphys%2fkiac424&partnerID=40&md5=bbd0de1b30c7f6ec00aed708f69bd5b7

28. Loesche F, Reiser MB. An Inexpensive, High-Precision, Modular Spherical Treadmill Setup Optimized for Drosophila Experiments. Front Behav Neurosci [Internet] 2021;15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111591400&doi=10.3389%2ffnbeh.2021.689573&partnerID=40&md5=52007397e1577cb206fe1e2513198093

29. Yang D. Simple homemade tools to handle fruit flies—drosophila melanogaster. Journal of Visualized Experiments [Internet] 2019;2019(149). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070467715&doi=10.3791%2f59613&partnerID=40&md5=20931da2f8a7a399430b7517eb5089f2

30. Bargiela A, Artero R. Practicing logical reasoning through Drosophila segmentation gene mutants. Biochemistry and Molecular Biology Education [Internet] 2021;49(5):729–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108353055&doi=10.1002%2fbmb.21554&partnerID=40&md5=928ada113fa3defc7ad5f9007bf9fb1b

31. Ni J, Shi Y, Sun J, Wu Q. The Effect of Self-Esteem on College Students’ Learning Adaptation: A Chain Mediation Analysis of Self-Efficacy and Learning Burnout. Asia-Pacific Education Researcher [Internet] 2024;Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85210472207&doi=10.1007%2fs40299-024-00945-z&partnerID=40&md5=4d6ee8c94b5d8e1a611964ed64ce557e

32. Altermatt ER. Academic Support From Peers as a Predictor of Academic Self-Efficacy Among College Students. J Coll Stud Ret [Internet] 2019;21(1):21–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064199275&doi=10.1177%2f1521025116686588&partnerID=40&md5=902f8ed95e4e1529e92598762fed66fa

33. Lei W, Wang X, Dai DY, Guo X, Xiang S, Hu W. Academic self-efficacy and academic performance among high school students: A moderated mediation model of academic buoyancy and social support. Psychol Sch [Internet] 2022;59(5):885–99. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123469549&doi=10.1002%2fpits.22653&partnerID=40&md5=4234e9bb8996b50b334e926e47e48b59

34. Balashov E. SELF-EFFICACY IN SELF-REGULATED STUDENT LEARNING. Youth Voice Journal [Internet] 2023;1(Special Issue):28–38. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158912791&partnerID=40&md5=0550758eac3a84cd41ed64b2a3fd9bf2

35. Al-Ansi AM, Jaboob M, Garad A, Al-Ansi A. Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Vol. 8, Social Sciences and Humanities Open. Elsevier Ltd; 2023.

36. Vats S, Joshi R. The Impact of Virtual Reality in Education: A Comprehensive Research Study. In: Sharma SK, Dwivedi YK, Metri B, Lal B, Elbanna A, editors. Transfer, Diffusion and Adoption of Next-Generation Digital Technologies. Cham: Springer Nature Switzerland; 2024. p. 126–36.

37. Lin XP, Li B Bin, Yao ZN, Yang Z, Zhang M. The impact of virtual reality on student engagement in the classroom–a critical review of the literature. Vol. 15, Frontiers in Psychology. Frontiers Media SA; 2024.

38. Rodolico G, Hirsu L. Virtual Reality in education: supporting new learning experiences by developing self-confidence of Postgraduate Diploma in Education (PGDE) student-teachers. EMI Educ Media Int. 2023;60(2):92–108.

39. Dyrberg NR, Treusch AH, Wiegand C. Virtual laboratories in science education: students’ motivation and experiences in two tertiary biology courses. J Biol Educ [Internet] 2017;51(4):358–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996486731&doi=10.1080%2f00219266.2016.1257498&partnerID=40&md5=f48b38f1c0d140513558b746a88b8aa9

40. Peechapol C. Investigating the Effect of Virtual Laboratory Simulation in Chemistry on Learning Achievement, Self-efficacy, and Learning Experience. International Journal of Emerging Technologies in Learning [Internet] 2021;16(20):196–207. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119684612&doi=10.3991%2fijet.v16i20.23561&partnerID=40&md5=7eb013de08918946f4bcba011e9e2c3e

41. Tatenov A, Amirkhanova AS, Savelyeva V V. Virtual-interactive visualization of atomic structures, electron configurations, energy levels in 3D format for the construction of virtual-interactive laboratories with the mechanisms of chemical reactions in inorganic and organic chemistry. International Journal of Applied Engineering Research [Internet] 2016;11(5):3319–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964027450&partnerID=40&md5=b220a84be8a2f0cf0857df8679a47a28

42. Zapata-Rivera LF, Aranzazu-Suescun C. Enhanced Virtual Laboratory Experience for Wireless Networks Planning Learning. Revista Iberoamericana de Tecnologias del Aprendizaje [Internet] 2020;15(2):105–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084839644&doi=10.1109%2fRITA.2020.2987725&partnerID=40&md5=976ed64f9a6caf14059c24393a1076d3

43. Kok YY, Er HM, Nadarajah VD. An Analysis of Health Science Students’ Preparedness and Perception of Interactive Virtual Laboratory Simulation. Med Sci Educ [Internet] 2021;31(6):1919–29. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114437288&doi=10.1007%2fs40670-021-01364-1&partnerID=40&md5=7d783a34d42d47a4ed058590fb00f5fc

44. Lynch T, Ghergulescu I. NEWTON Virtual Labs: Introduction and Teacher Perspective [Internet]. In: Proceedings - IEEE 17th International Conference on Advanced Learning Technologies, ICALT 2017. 2017. page 343–5.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030249295&doi=10.1109%2fICALT.2017.133&partnerID=40&md5=3dd4551af46c3877473b82f85e6e9555

45. Shetty S, Shetty A, Aishwarya Hegde A, Salian AB, Umesh P, Gangadharan K V. Experiential Learning of Physio-Chemical and Bacteriological Properties of Water using Virtual Labs [Internet]. In: 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2020 - Proceedings. 2020. page 273–8.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099693325&doi=10.1109%2fDISCOVER50404.2020.9278043&partnerID=40&md5=330a639f68dd4484a09a8ab27c909829

46. Sypsas A, Kalles D. Virtual laboratories in biology, biotechnology and chemistry education: A literature review [Internet]. In: ACM International Conference Proceeding Series. 2018. page 70–5.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060855080&doi=10.1145%2f3291533.3291560&partnerID=40&md5=8c3f29e71568f9a8c0d736cdba25497e

47. Ali N, Ullah S, Raees M. The effect of task specific aids on students’ performance and minimization of cognitive load in a virtual reality chemistry laboratory. Comput Animat Virtual Worlds [Internet] 2023;34(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164335837&doi=10.1002%2fcav.2194&partnerID=40&md5=e4219289b1b058626e0284678c82eb65

48. Ren S, McKenzie FD, Chaturvedi SK, Prabhakaran R, Yoon J, Katsioloudis PJ, et al. Design and comparison of immersive interactive learning and instructional techniques for 3D virtual laboratories. Presence: Teleoperators and Virtual Environments [Internet] 2015;24(2):93–112. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947215646&doi=10.1162%2fPRES_a_00221&partnerID=40&md5=c6a43c9cc1a17c86ab1e9b7f7296d23d

49. Chaturvedi SK. A web-based heat exchanger virtual laboratory for enhancing physical laboratory experience of engineering students [Internet]. In: Proceedings of the 13th IASTED International Conference on Computers and Advanced Technology in Education, CATE 2010. 2010. page 100–5.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862113119&partnerID=40&md5=f6a9d93720879b8d6e34a36beb574fd7

50. Chaturvedi SK, Dharwadkar KA. Simulation and Visualization Enhanced Engineering Education - Development and implementation of virtual experiments in a laboratory course [Internet]. In: ASEE Annual Conference and Exposition, Conference Proceedings. 2011. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029079063&partnerID=40&md5=021d704f6ef5eeac2406275438af07a7

51. Tsihouridis C, Vavougios D, Batsila M, Ioannidis GS. The Timeless Controversy Between Virtual and Real Laboratories in Science Education—“And the Winner Is…” [Internet]. In: Advances in Intelligent Systems and Computing. 2019. page 620–31.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063034937&doi=10.1007%2f978-3-030-11935-5_59&partnerID=40&md5=2081d6ff8ae7706860eff77ab2c42bd0

52. Chan P, Van Gerven T, Dubois JL, Bernaerts K. Virtual chemical laboratories: A systematic literature review of research, technologies and instructional design. Computers and Education Open [Internet] 2021;2. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124017940&doi=10.1016%2fj.caeo.2021.100053&partnerID=40&md5=5f74d09463098a8d319c9a031956645f

53. Byukusenge C, Nsanganwimana F, Tarmo AP. Effectiveness of Virtual Laboratories in Teaching and Learning Biology: A Review of Literature. International Journal of Learning, Teaching and Educational Research [Internet] 2022;21(6):1–17. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135239438&doi=10.26803%2fijlter.21.6.1&partnerID=40&md5=4ce50b827c77206fe4d919a7a870d222

54. Gong J, Chen M, Li Q. The Sources of Research Self-Efficacy in Postgraduate Nursing Students: A Qualitative Study. Healthcare (Switzerland) [Internet] 2022;10(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138513654&doi=10.3390%2fhealthcare10091712&partnerID=40&md5=6d077d13d79efa1f9d8cb56e40dc3c3c

55. Pasupathy R, Siwatu KO. An investigation of research self-efficacy beliefs and research productivity among faculty members at an emerging research university in the USA. Higher Education Research and Development [Internet] 2014;33(4):728–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902796729&doi=10.1080%2f07294360.2013.863843&partnerID=40&md5=fbb5268cb05b51d954886742dab8cf59

56. González JD, Escobar JH, Sánchez H, De La Hoz J, Beltrán JR, Arciniegas SM, et al. Implementation and evaluation of an effective computational method that promotes the conceptualization of Newton’s laws of motion [Internet]. In: Journal of Physics: Conference Series. 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073895323&doi=10.1088%2f1742-6596%2f1247%2f1%2f012042&partnerID=40&md5=090679b25fc6b9e89450740847f9d256

57. Byukusenge C, Nsanganwimana F, Tarmo AP. Investigating the effect of virtual laboratories on students’ academic performance and attitudes towards learning biology. Educ Inf Technol (Dordr) [Internet] 2024;29(1):1147–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178063340&doi=10.1007%2fs10639-023-12351-x&partnerID=40&md5=953c74faa70569b4b6a2979869ee60f7

58. Kolil VK, Achuthan K. Virtual labs in chemistry education: A novel approach for increasing student’s laboratory educational consciousness and skills. Educ Inf Technol (Dordr) [Internet] 2024;29(18):25307–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196768473&doi=10.1007%2fs10639-024-12858-x&partnerID=40&md5=1202d13dbfd10bfa14570a405b606cbe

59. Deep A, Murthy S, Bhat J. Geneticus Investigatio: a technology-enhanced learning environment for scaffolding complex learning in genetics. Res Pract Technol Enhanc Learn [Internet] 2020;15(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096831895&doi=10.1186%2fs41039-020-00145-5&partnerID=40&md5=7046634970a864eff365cecb5847a532

60. Smýkal P, K. Varshney R, K. Singh V, Coyne CJ, Domoney C, Kejnovský E, et al. From Mendel’s discovery on pea to today’s plant genetics and breeding: Commemorating the 150th anniversary of the reading of Mendel’s discovery. Theoretical and Applied Genetics [Internet] 2016;129(12):2267–80. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990888258&doi=10.1007%2fs00122-016-2803-2&partnerID=40&md5=378c438b91f26126cc5c0d402ce5ce5d

61. Sukhija N, Kanaka KK, Purohit PB, Ganguly I, Malik AA, Singh S, et al. Mendelism: Connecting the Dots Across Centuries. Cytol Genet [Internet] 2023;57(5):500–16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172305187&doi=10.3103%2fS0095452723050067&partnerID=40&md5=0fc692097a2c39871f51b809945bacd7

62. Berger F. Which field of research would Gregor Mendel choose in the 21st century. Plant Cell [Internet] 2022;34(7):2462–5. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134360516&doi=10.1093%2fplcell%2fkoac072&partnerID=40&md5=6e8981670770b6ba0cc7892e6cdc7f44

63. Green A. Genetics in neonatal surgical practice [Internet]. In: Newborn Surgery, Fourth Edition. 2017. page 245–60.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053971913&doi=10.4324%2f9781315113968&partnerID=40&md5=c6e0e27cebc5656342feacccaa03d330

64. Reyes RL, Isleta KP, Regala JD, Bialba DMR. Enhancing experiential science learning with virtual labs: A narrative account of merits, challenges, and implementation strategies. J Comput Assist Learn [Internet] 2024;40(6):3167–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203069951&doi=10.1111%2fjcal.13061&partnerID=40&md5=a2beeecf7bb23986c8466dda7446cfc0

65. Schwarzer R, Jerusalem M. The general self-efficacy scale (GSE) [Internet]. Available from: https://www.researchgate.net/publication/311570532

66. Zhao Y. Construction of Virtual Simulation Laboratory in Higher Vocational Colleges [Internet]. In: Advances in Intelligent Systems and Computing. 2019. page 645–51.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064533418&doi=10.1007%2f978-3-030-15740-1_86&partnerID=40&md5=0c2f1a36f173b11cfb2bb7bf1aefaaef

67. Vahdatikhaki F, Friso-van den Bos I, Mowlaei S, Kollöffel B. Application of gamified virtual laboratories as a preparation tool for civil engineering students. European Journal of Engineering Education [Internet] 2024;49(1):164–91. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172665600&doi=10.1080%2f03043797.2023.2265306&partnerID=40&md5=7896097097527b9e6b3bb7bd018066de

68. Hamed G, Aljanazrah A. THE EFFECTIVENESS OF USING VIRTUAL EXPERIMENTS ON STUDENTS’ LEARNING IN THE GENERAL PHYSICS LAB. Journal of Information Technology Education: Research [Internet] 2020;19:977–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098501622&doi=10.28945%2f4668&partnerID=40&md5=c6d25b06c570e8f11702f8bba34f9d74

69. Kumar V. The inescapable effects of virtual laboratory and comparison of traditional laboratory with virtual laboratory [Internet]. In: Communication and Computing Systems- Proceedings of the 2nd International Conference on Communication and Computing systems, ICCCS 2018. 2019. page 509–12.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091667221&partnerID=40&md5=b5c789dddc00cdb6d85f0815121e7998

70. Garimella U, Sahin N. Inheritance Patterns: Probability Rules & Probability Trees. American Biology Teacher [Internet] 2022;84(1):22–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124098037&doi=10.1525%2fabt.2022.84.1.22&partnerID=40&md5=41eacd310b798727f966f0931f13aa44

71. Vihos J, Chute A, Carlson S, Shah M, Buro K, Velupillai N. Virtual Reality Simulation in a Health Assessment Laboratory Course: A Mixed-methods Explanatory Study Examining Student Satisfaction and Self-confidence. Nurse Educ [Internet] 2024;49(6):E315–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207600348&doi=10.1097%2fNNE.0000000000001635&partnerID=40&md5=42c168f7fe14f2e2c0022ea24d6ef502

72. Spencer D, McKeown C, Tredwell D, Huckaby B, Wiedner A, Dums JT, et al. Student experiences with a molecular biotechnology course containing an interactive 3D immersive simulation and its impact on motivational beliefs. PLoS One [Internet] 2024;19(7 July). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199647337&doi=10.1371%2fjournal.pone.0306224&partnerID=40&md5=cbe2bf3d0f5d8f23fbeb77e279afb7ee

73. Ikhsan J, Guntur MIS, Maiyarni R. Assessing Chemistry Virtual Laboratory and Its Impact in the Learning Process [Internet]. In: ACM International Conference Proceeding Series. 2023. page 230–5.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180124285&doi=10.1145%2f3625704.3625769&partnerID=40&md5=b0a5b928ae40608954b848fd1f8f822e

74. Badarudin R, Hariyanto D, Supriyadi E, Djatmiko IW, Husna AF, Kassymova GK, et al. Enhancing Digital Learning in Electrical Machines Practical Course Using a Cutting-Edge Desktop Virtual Laboratory for DC Motor Simulation. TEM Journal [Internet] 2024;13(3):2522–33. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206973191&doi=10.18421%2fTEM133-78&partnerID=40&md5=6bb704a9e95563dc78558e230892a8bf

75. Shadbad FN, Bahr G, Luse A, Hammer B. Best of Both Worlds: The Inclusion of Gamification in Virtual Lab Environments to Increase Educational Value [Internet]. In: Proceedings of the Annual Hawaii International Conference on System Sciences. 2023. page 1147–56.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152142642&partnerID=40&md5=73f2a3d87a7fca6d21473f294c7e16c0

76. Li X, Xia M. Dynamic calibration of self-efficacy to cognitive load: the longitudinal mediation effect of state anxiety. BMC Psychol [Internet] 2024;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85212761465&doi=10.1186%2fs40359-024-02254-y&partnerID=40&md5=aa819dab6bad31a8ccad50fb4fb51f7a

77. Racey SN, Akladi R, Williams LW, Olley L, Goodall S, McCartney- Bulmer K, et al. Online laboratory simulations as a pedagogy to reduce anxiety and build confidence for student success. Journal of Applied Learning and Teaching [Internet] 2023;6(Special Issue 1):123–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187898762&doi=10.37074%2fjalt.2023.6.S1.14&partnerID=40&md5=0244cb8fc8c6bbd2afd8d08136a53d7e

78. Feldon DF, Brockbank R, Litson K. Direct Effects of Cognitive Load on Self-Efficacy During Instruction. J Educ Psychol [Internet] 2023;116(7):1153–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183344833&doi=10.1037%2fedu0000826&partnerID=40&md5=2a0efdabe07a0e8e04e9e5f55dc010df

79. Tingting P, Xun D, Jun W, Shu D, Shan Z. Mediator Effects of Cognitive Load on Association between Self-Efficacy and Task Load in Intensive Care Unit Nurses. J Nurs Manag [Internet] 2024;2024. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185323443&doi=10.1155%2f2024%2f5562751&partnerID=40&md5=53c1f776937995adec723cf13f8f2483

80. Singh G. Computer simulations to model Mendel’s Laws on inheritance in computational biology [Internet]. In: Proceedings: International Conference on Applications of Computer and Information Sciences to Nature Research 2010, ACISNR 2010. 2010. page 19–23.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649602194&doi=10.1145%2f1868013.1868019&partnerID=40&md5=6e576e05ae631cf301fe700269e28351

81. Galloway K, Anderson N. Cootie genetics: Simulating Mendel’s experiments to understand the laws of inheritance. American Biology Teacher [Internet] 2014;76(3):189–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896799788&doi=10.1525%2fabt.2014.76.3.7&partnerID=40&md5=8850390d6f546f38e6ce93e105b52135

82. Phelan J. Punnett Square [Internet]. In: Brenner’s Encyclopedia of Genetics: Second Edition. 2013. page 532.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043291021&doi=10.1016%2fB978-0-12-374984-0.01242-0&partnerID=40&md5=73bf37490180bbfcdab1e42b7e8f907d

83. Haudry A, Laurent S, Kapun M. Population genomics on the fly: Recent advances in Drosophila [Internet]. In: Methods in Molecular Biology. 2020. page 357–96.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078235546&doi=10.1007%2f978-1-0716-0199-0_15&partnerID=40&md5=ac596271d923dd958ea9bfb989b9eec7

84. Yin J, Qiu A, Li L, Ge S. The Impacts of Characteristic Factors on Learning Satisfaction: An Empirical Study in Gamification Virtual Simulation Systems [Internet]. In: Lecture Notes in Business Information Processing. 2024. page 143–58.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195366312&doi=10.1007%2f978-3-031-60324-2_12&partnerID=40&md5=da0e41e5620d36b480f5772e3a0705ff

85. Scott PH, Veitch NJ, Gadegaard H, Mughal M, Norman G, Welsh M. Enhancing theoretical understanding of a practical biology course using active and self-directed learning strategies. J Biol Educ [Internet] 2018;52(2):184–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013779347&doi=10.1080%2f00219266.2017.1293557&partnerID=40&md5=08c89fe0f2e390244a28fb2300f446aa

86. Rai B, Shin TH, Huei LC. Bringing play back into the biology classroom with the use of gamified virtual lab simulation. Journal of Applied Learning and Teaching [Internet] 2019;2(2):48–55. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095753839&doi=10.37074%2fjalt.2019.2.2.7&partnerID=40&md5=8bd6fac140c25646f5b3add6438f91a4

87. Digarbayeva A, Kaliyeva A, Batayeva D, Bakirova K, Koksal EA. Enhancing the Professional Skills of Future Biologists Through Laboratory Training. J Adv Acad [Internet] 2024;35(4):752–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195503416&doi=10.1177%2f1932202X241253448&partnerID=40&md5=14a68f1c8058114d99c1a87643b11c9e

88. Vaez Ghaemi R, Potvin G. Experimenting with labs: Practical and pedagogical considerations for the integration of problem-based lab instruction in chemical engineering. Canadian Journal of Chemical Engineering [Internet] 2021;99(10):2163–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105882458&doi=10.1002%2fcjce.24136&partnerID=40&md5=c77f4c2f2113e22e6438d6dfdb587cdc

89. Beatrice P, Grimaldi A, Bonometti S, Caruso E, Bracale M, Montagnoli A. Adding immersive virtual reality laboratory simulations to traditional teaching methods enhances biotechnology learning outcomes. Front Educ (Lausanne) [Internet] 2024;9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196707586&doi=10.3389%2ffeduc.2024.1354526&partnerID=40&md5=94c4215cfd8478fa7efeda9668eba75a

90. Puhek M, Šorgo A. Virtual biology exercise for the active learning of mendelian genetics and development of key competences [Internet]. In: CSEDU 2011 - Proceedings of the 3rd International Conference on Computer Supported Education. 2011. page 390–3.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053007639&partnerID=40&md5=906c612fc934ada0a20b2c5c0deb341a

91. Schnieder M, Williams S, Ghosh S. Comparison of In-Person and Virtual Labs/Tutorials for Engineering Students Using Blended Learning Principles. Educ Sci (Basel) [Internet] 2022;12(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128324323&doi=10.3390%2feducsci12030153&partnerID=40&md5=5a474f4391e4684763bdfd092eecd028

92. Ghanbaripour AN, Talebian N, Miller D, Tumpa RJ, Zhang W, Golmoradi M, et al. A Systematic Review of the Impact of Emerging Technologies on Student Learning, Engagement, and Employability in Built Environment Education. Buildings [Internet] 2024;14(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205219891&doi=10.3390%2fbuildings14092769&partnerID=40&md5=4554c784787572f0a6bc687fa65acd0b

93. Sivia A, MacMath S, Novakowski C, Britton V. Examining Student Engagement During a Project-Based Unit in Secondary Science. Canadian Journal of Science, Mathematics and Technology Education [Internet] 2019;19(3):254–69. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069478003&doi=10.1007%2fs42330-019-00053-x&partnerID=40&md5=bd60c614d5cd0430d3f1b668219f5b55

94. Gungor A, Kool D, Lee M, Avraamidou L, Eisink N, Albada B, et al. The Use of Virtual Reality in A Chemistry Lab and Its Impact on Students’ SelfEfficacy, Interest, Self-Concept and Laboratory Anxiety. Eurasia Journal of Mathematics, Science and Technology Education [Internet] 2022;18(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127011669&doi=10.29333%2fejmste%2f11814&partnerID=40&md5=b61e71a22f22f562a4b4cabb452021ee

95. Horrigan LA. Tackling the threshold concepts in physiology: What is the role of the laboratory class? Adv Physiol Educ [Internet] 2018;42(3):507–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052610963&doi=10.1152%2fadvan.00123.2017&partnerID=40&md5=6133659119fa4b5fba7e59fffdad3a1e

96. Hidayah NP, Wicaksono GW, Perdana MI, Faiz A. Implementation of Virtual Reality Moot Court for Simulation and Procedural Law Learning of the Constitutional Court. International Journal on Informatics Visualization [Internet] 2024;8(4):2444–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217513227&doi=10.62527%2fjoiv.8.4.3125&partnerID=40&md5=0cdf09204bb46c57563ef4eedd0d83ed

97. Kefalis C, Skordoulis C, Drigas A. Digital Simulations in STEM Education: Insights from Recent Empirical Studies, a Systematic Review. Encyclopedia. 2025 Jan 15;5(1):10.

98. Nielsen B, Harder N. Causes of Student Anxiety during Simulation: What the Literature Says. Clin Simul Nurs [Internet]. 2013;9(11):e507–12. Available from: https://www.sciencedirect.com/science/article/pii/S1876139913000601

99. Ratish S. Effectiveness of simulation among nursing students: A systematic review. International Journal of Advance Research in Nursing. 2025 Jan 1;8(1):202–6.

100. Shambare B, Simuja C. Exploring the Integration of Virtual Laboratories in Science Education: International Journal of Virtual and Personal Learning Environments [Internet]. 2024;14(1). Available from: https://www.sciencedirect.com/science/article/pii/S1947851824000012

101. Huang X, Mayer RE, Usher EL. Better together: Effects of four self-efficacy-building strategies on online statistical learning. Contemp Educ Psychol. 2020 Oct 1;63.

102. Paas F, van Merriënboer JJG. Cognitive-Load Theory: Methods to Manage Working Memory Load in the Learning of Complex Tasks. Curr Dir Psychol Sci. 2020 Aug 1;29(4):394–8.

103. Surbakti R, Umboh SE, Pong M, Dara S. Cognitive Load Theory: Implications for Instructional Design in Digital Classrooms. International Journal of Educational Narratives. 2024 Dec 28;2(6):483–93.

104. Naseer F, Tariq R, Alshahrani HM, Alruwais N, Al-Wesabi FN. Project based learning framework integrating industry collaboration to enhance student future readiness in higher education. Sci Rep. 2025 Dec 1;15(1).

105. Achuthan K, Raghavan D, Shankar B, Francis SP, Kolil VK. Impact of remote experimentation, interactivity and platform effectiveness on laboratory learning outcomes. International Journal of Educational Technology in Higher Education. 2021 Dec 1;18(1).

106. Ching-Pong Poo M, Lau Y yip, Chen Q. Are Virtual Laboratories and Remote Laboratories Enhancing the Quality of Sustainability Education? 2023; Available from: https://doi.org/10.3390/educsci13111110.

Downloads

Published

2025-10-04

How to Cite

1.
Agustin M, Zubaidah S, Susanto H, Habiddin H, Roil Bilad M. How Does Pre-Lab Virtual Laboratory Affect Students’ Self-Efficacy and Understanding Mendel’s Law?. Salud, Ciencia y Tecnología [Internet]. 2025 Oct. 4 [cited 2025 Oct. 11];5:2174. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2174