Radiogenomics in oncology: image-genome integration for personalized medicine

Authors

DOI:

https://doi.org/10.56294/saludcyt20252144

Keywords:

Radiogenomics, image interpretation, magnetic resonance imaging, precision medicine, biomarkers, tumor, artificial intelligence, oncology

Abstract

Introduction: radiogenomics, which combines medical imaging data with genomic profiling, has emerged as a key tool in precision oncology. This noninvasive approach improves the diagnosis and prognosis of tumors such as lung, rectal, glioma, and breast cancer.

Objectives: A systematic review (PRISMA 2020) was conducted of studies published between 2020 and 2025, extracted from PubMed, Scopus, Web of Science, ScienceDirect, and the Cochrane Library. Of 670 articles found, 21 met the inclusion criteria.

Methods: this was a systematic review following the PRISMA 2020 guidelines. Original studies, reviews, and meta-analyses published in English or Spanish were included. Searches were conducted in PubMed, Scopus, Web of Science, ScienceDirect, and the Cochrane Library.

Results: of a total of 670 articles retrieved, 21 met the inclusion criteria. Most studies demonstrated a high predictive capacity of radiogenomic models to identify mutations such as EGFR and KRAS.

Conclusions: this study underscores the need to establish multicenter protocols and robust validations to ensure their clinical applicability and consolidate their role in personalized medicine.

References

1. Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, et al. The era of radiogenomics in precision medicine: an emerging approach to support diagnosis, treatment decisions, and prognostication in oncology. Front Oncol. 2020;10:570465. doi:10.3389/fonc.2020.570465.

2. Lambin P, et al. Radiogenomics: bridging imaging and genomics. MedComm. 2024;5(3):e372. doi:10.1002/mco2.722.

3. Jiang Y, Gao C, Shao Y, Lou X, Hua M, Lin J. The prognostic value of radiogenomics using CT in patients with lung cancer: a systematic review. Insights Imaging. 2024;15:259. doi:10.1186/s13244-024-01831-4.

4. Filippi M, Muoio B, Giannini V, et al. PET radiogenomics and imaging phenotypes: current knowledge and future perspectives in cancer diagnosis. Eur J Nucl Med Mol Imaging. 2025;52(1):1–12. doi:10.1007/s00259-024-06579-6.

5. Kumar R, Sporn K, Khanna A, et al. Integrating radiogenomics and machine learning in musculoskeletal oncology care. Diagnostics (Basel). 2025;15(11):1377. doi:10.3390/diagnostics15111377.

6. Wen Z, Sun L, Zhao P, et al. Insights into PET-based radiogenomics in oncology. Eur J Nucl Med Mol Imaging. 2025;52(3):345–60. doi:10.1007/s00259-025-07262-7.

7. Gao X, et al. External validation of a CT-based radiogenomics model for EGFR mutation in lung cancer. Acad Radiol. 2025. doi:10.1016/j.acra.2025.01.001.

8. Rios Velazquez E, et al. A review of radiomics and genomics applications in cancers. Radiother Oncol. 2022;160:210–220. doi:10.1186/s13014-022-02192-2.

9. Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Scoping Reviews (2020). In: Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z, editors. JBI Manual for Evidence Synthesis. JBI; 2024. Available from: https://synthesismanual.jbi.global. doi:10.46658/JBIMES-24-09.

10. Navarrete IG, Yaqub M. A radiogenomics pipeline for lung nodules segmentation and prediction of EGFR mutation status from CT scans. arXiv [preprint]. 2022. arXiv:2211.06620.

11. Gu J, Zhao Z, Zeng Z, Wang Y, Qiu Z, Veeravalli B, et al. Multi-phase cross-modal learning for noninvasive gene mutation prediction in hepatocellular carcinoma. arXiv [preprint]. 2020. arXiv:2005.04069.

12. Ismail M, Correa R, Bera K, Verma R, Bamashmos AS, Beig N, et al. Spatial-and-context aware (SpACe) “virtual biopsy” radiogenomic maps to target tumor mutational status on structural MRI. arXiv [preprint]. 2020. arXiv:2006.09878.

13. Gou J, Cheng J, Zhang Y. Imaging genomics of cancer: a bibliometric analysis and review. Cancer Imaging. 2025;25(24). doi:10.1186/s40644-025-00841-9.

14. He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B. Radiogenomics: bridging the gap between imaging and genomics for precision oncology. MedComm (Beijing). 2024 Sep 9;5(9):e722. doi:10.1002/mco2.722.

15. O’Sullivan NJ, Carroll D, Creamer D, Joyce MR. Radiogenomics in rectal cancer: an emerging approach for personalized medicine. Cancers (Basel). 2023;15(12):3042. doi:10.3390/cancers15123042.

16. Vivacqua G, Latorre A, Suppa A, Nardi M, Pietracupa S, Mancinelli R, et al. Radiogenomics: bridging the gap between imaging and genomics. MedComm. 2024;5(3):e372. doi:10.1002/mco2.722.

17. Beig N, Bera K, Tiwari P. Introduction to radiomics and radiogenomics in neuro-oncology: implications and challenges. Neurooncol Adv. 2020;2(S4):v3–iv14. doi:10.1093/noajnl/vdaa148.

18. Zeng S, Wang XL, Yang H. Radiomics and radiogenomics: extracting more information from medical images for the diagnosis and prognostic prediction of ovarian cancer. Mil Med Res. 2024;11:77. doi:10.1186/s40779-024-00580-1.

19. Perillo T, De Giorgi M, Papace UM, Serino A, Cuocolo R, Manto A. Current role of machine learning and radiogenomics in precision neuro-oncology. Explor Target Antitumor Ther. 2023;4:545–55. doi:10.37349/etat.2023.00151.

20. Scarborough JA, Scott JG. Translation of precision medicine research into biomarker-informed care in radiation oncology. Semin Radiat Oncol. 2022;32(1):42–53. doi:10.1016/j.semradonc.2021.09.001.

21. Liu Y, Jordan JT, Bredella MA, Erdin S, et al. Correlation between NF1 genotype and imaging phenotype on whole-body MRI: NF1 radiogenomics. Neurology. 2020;94(24):e2521–e2531. doi:10.1212/WNL.0000000000009490.

Downloads

Published

2025-09-17

Issue

Section

Systematic reviews or meta-analyses

How to Cite

1.
Galarza Galarza CK, Erazo Beltrán LB. Radiogenomics in oncology: image-genome integration for personalized medicine. Salud, Ciencia y Tecnología [Internet]. 2025 Sep. 17 [cited 2025 Sep. 27];5:2144. Available from: https://sct.ageditor.ar/index.php/sct/article/view/2144