Technological Mapping and Emerging Applications of Free-Piston Engine Systems: A Comparative Review of FPSE and FPCE Architectures

Authors

DOI:

https://doi.org/10.56294/saludcyt20251957

Keywords:

Free-Piston Engine, FPSE, FPCE, Energy Conversion, Linear Alternator

Abstract

Introduction: Free-Piston Engine (FPE) technology provides flexible energy conversion for applications such as hybrid vehicles and micro-CHP systems. However, studies on Free-Piston Stirling Engines (FPSE) and Free-Piston Combustion Engines (FPCE) are still scattered, with limited analysis of their designs, subsystems, and applications. The aim is to describe recent technical gains and highlight promising avenues for deployment in energy supply and mobile applications.
Method: A Systematic Literature Review (SLR) was conducted using the PRISMA-PCF protocol. Of the 263 articles identified in the Scopus database, 77 were selected based on three research questions. NVivo software supported thematic content analysis.
Result: The review identified two primary FPE types: FPSE, which is suitable for external heat sources such as solar and cryogenic systems, and FPCE, which features variable compression and adaptability for hybrid vehicles. Key subsystems, such as linear alternators and return mechanisms, support distinct technical functions. Applications span energy generation, waste heat recovery, and renewable energy systems.
Conclusion: This study maps the progress and application areas of FPSE and FPCE, highlighting opportunities for integration and providing direction for future development in design and performance optimization.

References

1. Smallbone A, Hanipah MR, Jia B, Scott T, Heslop JA, Towell B, et al. Realization of a Novel Free-Piston Engine Generator for Hybrid-Electric Vehicle Applications. Energy & Fuels. 2020;34(10):12926–39. https://doi.org/10.1021/acs.energyfuels.0c01647

2. Hu Y, Xu Z, Yang L, Liu L. Electromagnetic Loss Analysis of a Linear Motor System Designed for a Free-Piston Engine Generator. Electronics. 2020;9(4):621. https://doi.org/10.3390/electronics9040621

3. Hong SK, Choi HY, Lim JW, Lim HJ, Jung HK. Analysis of tubular-type linear generator for free-piston engine. Renew Energy Power Qual J. 2007;1(5):719–22. https://doi.org/10.24084/repqj05.365

4. Yuan C, Feng H, He Y, Xu J. Motion characteristics and mechanisms of a resonance starting process in a free-piston diesel engine generator. In: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2016. p. 206–18. https://doi.org/10.1016/j.ijhydene.2019.05.232

5. Sato M, Naganuma K, Nirei M, Yamanaka Y, Suzuki T, Goto T, et al. Improving the Constant‐volume Degree of Combustion Considering Generatable Range at Low Speed in a Free‐piston Engine Linear Generator System. Ieej Trans Electr Electron Eng. 2019;14(11):1703–10. https://doi.org/10.1541/ieejjia.7.343

6. Lu J, Xu Z, Liu L. Compression Ratio Control of an Opposed-Piston Free-Piston Engine Generator Based on Artificial Neural Networks. IEEE Access. 2020;8:107865–75. https://doi.org/10.1109/ACCESS.2020.3001273

7. Irie S, Sato M, Mizuno T, Nishimura F, Naganuma K. Effect of Nonlinear Spring Characteristics on the Efficiency of Free-Piston Engine Generator. Energies. 2022;15(20):7579. https://doi.org/10.3390/en15207579

8. Masoumi AP, Tavakolpour-Saleh AR. Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm. Energy. 2020;195. https://doi.org/10.1016/j.energy.2020.117064

9. Qiu S, Solomon L. Free-Piston Stirling Engine Generators. 2019; https://doi.org/10.5772/intechopen.79413

10. Erol D, Çalışkan S. The Examination of Performance Characteristics of a Beta‐type Stirling Engine With a Rhombic Mechanism: The Influence of Various Working Fluids and Displacer Piston Materials. Int J Energy Res. 2021;45(9):13726–47. https://doi.org/10.1002/er.6702

11. Perozziello C, Grosu L, Vaglieco BM. Free-piston stirling engine technologies and models: A review. Energies. 2021;14(21):7009. https://doi.org/10.3390/en14217009

12. Kim DJ, Sim K. Linear dynamic analysis of free-piston stirling engines on operable charge pressure and working frequency along with experimental verifications. Appl Sci. 2021;11(11):5205. https://doi.org/10.3390/app11115205

13. Lee C-W, Kim D-J, Kim S-K, Sim K. Design Optimization of Flexure Springs for Free-Piston Stirling Engines and Experimental Evaluations With Fatigue Testing. Energies. 2021;14(16):5156. https://doi.org/10.3390/en14165156

14. Cheng CH, Dhanasekaran S. Design of a Slot-Spaced Permanent Magnet Linear Alternator Based on Numerical Analysis. Energies. 2022;15(13):4523. https://doi.org/10.3390/en15134523

15. Hung NB, Lim O. A review of free-piston linear engines. Appl Energy. 2016;178(x):78–97. https://doi.org/10.1016/j.apenergy.2016.06.038

16. Mou J, Hong G. A numerical model on thermodynamic analysis of free piston Stirling engines. In: IOP Conference Series: Materials Science and Engineering. 2017. p. 12090. https://doi.org/10.1088/1757-899X/171/1/012090

17. Kong L, Wu Z, Jiang J, Li J, Luo N. Characterization of a Thermoelectric System Based on a Solar Dish Stirling Engine: A Review. Sustain Energy Fuels. 2024;8(19):4399–428. https://doi.org/10.1039/d4se00605d

18. Wang X, Chen F, Zhu R, Yang G, Zhang C. A review of the design and control of free-piston linear generator. Energies. 2018;11(8):1–21. https://doi.org/10.3390/en11082179

19. Rahman RA, Suwandi A, Nurtanto M. Experimental investigation on the effect of thermophysical properties of a heat transfer fluid on pumping performance for a convective heat transfer system. Vol. 7, Journal of Thermal Engineering. 2021. p. 1628–39. https://doi.org/10.18186/thermal.1025988

20. Guo C, Wang Y, Tong L, Feng H, Zuo Z, Jia B. Research on Piston Dynamics and Engine Performances of a Free-Piston Engine Linear Generator Coupling With Various Rebound Devices. Energies. 2023;16(18):6570. https://doi.org/10.3390/en16186570

21. Kitchenham B, Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineering [Internet]. Keele University and University of Durham. EBSE Technical Report, Vol. V2. 2007 [cited 2021 Dec 27]. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471

22. Kitchenham B, Pretorius R, Budgen D, Brereton OP, Turner M, Niazi M, et al. Systematic literature reviews in software engineering-A tertiary study. Inf Softw Technol. 2010;52(8):792–805. http://dx.doi.org/10.1016/j.infsof.2010.03.006

23. Hanipah MR, Rosli MHA. Performance Characteristics of a Small Poppet Valve Crankshaft Engine in Free-Piston Engine Mode. Int J Automot Mech Eng. 2021;18(3):9149–57. https://doi.org/10.15282/ijame.18.3.2021.26.0703

24. Zare S, Tavakolpour-Saleh AR. Free Piston Stirling Engines: A Review. Int J Energy Res. 2019;44(7):5039–70. https://doi.org/10.1002/er.4533

25. Svrcek MN, Edwards CF. Emissions From an Extreme-Compression, Free-Piston Engine With Diesel-Style Combustion. Int J Engine Res. 2012;13(3):238–52. https://doi.org/10.1177/1468087411435207

26. Mikalsen R, Roskilly AP. A review of free-piston engine history and applications. Appl Therm Eng. 2007;27(14–15):2339–52.

27. Kizilaslan A, Sözbilir M, Diyaddin Yaşar M. Inquiry based teaching in Turkey: A content analysis of research reports. Int J Environ Sci Educ. 2012;7(4):599–617.

28. Miller SL, Svrcek MN, Teh K-Y, Edwards CF. Assessing the Feasibility of Increasing Engine Efficiency Through Extreme Compression. Int J Engine Res. 2011;12(3):293–307. https://doi.org/10.1016/j.applthermaleng.2007.03.015

29. Goertz M, Peng L. Free piston engine its application and optimization. SAE Tech Pap. 2000;(724). https://doi.org/10.4271/2000-01-0996

30. Robinson MC, Clark N. Fundamental Analysis of Spring-Varied, Free Piston, Otto Engine Device. SAE Int J Engines. 2014;7(1):195–220. https://doi.org/10.4271/2014-01-1099

31. Meng L, Ding L, Khan AM, Alkahtani M, Shan Y. Mathematical modeling of flexible printed circuit configuration: a study in deformation and optimization. Sci Rep. 2024;14(1):1–23. https://doi.org/10.1038/s41598-024-64770-6

32. Zainal A EZ, Mohammed SE, A. Aziz AR, Baharom MB, Jaffry A, Firmansyah, et al. Effect of aspect ratio on the performance characteristics of free piston linear generator engine fueled by hydrogen. Int J Hydrogen Energy [Internet]. 2021;46(17):10506–17. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.12.122

33. Li J, Yang F, Zhang H, Wu Z, Tian Y, Hou X, et al. Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design. Energy. 2020;195(30):116966. https://doi.org/10.1016/j.energy.2020.116966

34. Chendong G, Zuo Z, Jia B, Ziwei Z, Huihua F, Roskilly AP. Parametric analysis of a dual-piston type free-piston gasoline engine linear generator. Energy Procedia. 2019;158:1431–6. https://doi.org/10.1016/j.egypro.2019.01.346

35. Shendage DJ, Kedare SB, Bapat SL. An analysis of beta type Stirling engine with rhombic drive mechanism. Renew Energy. 2011;36(1):289–97. https://doi.org/10.1016/j.renene.2010.06.041

36. Karabulut H. Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles. Renew Energy [Internet]. 2011;36(6):1704–9. https://doi.org/https://doi.org/10.1016/j.renene.2010.12.006

37. Weinstein LA, Loomis J, Bhatia B, Bierman DM, Wang EN, Chen G. Concentrating Solar Power. Chem Rev. 2015;115(23):12797–838. https://doi.org/10.1021/acs.chemrev.5b00397

38. Hafez AZ, Soliman A, El-Metwally KA, Ismail IM. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis. Energy Convers Manag. 2016;126:60–75. https://doi.org/10.1016/j.enconman.2016.07.067

39. Invernizzi CM. Stirling engines using working fluids with strong real gas effects. Appl Therm Eng. 2010;30(13):1703–10. https://doi.org/10.1016/j.applthermaleng.2010.03.029

40. Dong G, Morgan R, Heikal M. A novel split cycle internal combustion engine with integral waste heat recovery. Appl Energy. 2015;157:744–53. https://doi.org/10.1016/j.apenergy.2015.02.024

41. Chahartaghi M, Sheykhi M. Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases. Energy. 2019;174:1251–66. https://doi.org/10.1016/j.energy.2019.03.012

42. Nielsen AS, York BT, MacDonald BD. Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios. Appl Energy. 2019;253(March):113557. https://doi.org/10.1016/j.apenergy.2019.113557

43. Gaikwad MK, Patil PA. Numerical and experimental investigation on the effect of regenerator mesh size on performance of the traveling wave thermoacoustic-stirling heat engine. Case Stud Therm Eng. 2020;20:100630. https://doi.org/10.1016/j.csite.2020.100630

44. Bitsikas P, Rogdakis E, Dogkas G. CFD study of heat transfer in Stirling engine regenerator. Therm Sci Eng Prog. 2020;17(June 2019):100492. https://doi.org/10.1016/j.tsep.2020.100492

45. Buliński Z, Kabaj A, Krysiński T, Szczygieł I, Stanek W, Rutczyk B, et al. A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions. Energy Convers Manag. 2019;195(May):125–38. https://doi.org/10.1016/j.enconman.2019.04.089

46. Liu F, Wu K, Rao Z, Peng Y. Spatial layouts and absorbing surface design of heater tube arrays of direct-illumination receiver used in high power dish/stirling system. Energy. 2019;188. https://doi.org/10.1016/j.energy.2019.116026

47. Garrido J, Aichmayer L, Abou-Taouk A, Laumert B. Experimental and numerical performance analyses of Dish-Stirling cavity receivers: Radiative property study and design. Energy. 2019;169:478–88. https://doi.org/10.1016/j.energy.2018.12.033

48. Formosa F, Despesse G. Analytical model for Stirling cycle machine design. Energy Convers Manag. 2010;51(10):1855–63. https://doi.org/10.1016/j.enconman.2010.02.010

49. Ziabasharhagh M, Nasir K, Mahmoodi M. Numerical solution of beta-type Stirling engine by optimizing heat regenerator for increasing output power and efficiency. J Basic Appl Sci Res . 2012;2(2):1395–406. www.textroad.com

50. Salazar JL, Chen WL. A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine. Energy Convers Manag. 2014;88:177–88. https://doi.org/10.1016/j.enconman.2014.08.040

51. Metscher JF. Free-Piston Stirling Convertor Model Development, Validation, and Analysis for Space Power Systems. 2014.

52. Jineesh MR, Kuzhiveli BT. Design and analysis of miniature free piston Stirling engine (FPSE) for on-board power production. In: IOP Conference Series: Materials Science and Engineering. 2019. https://doi.org/10.1088/1757-899X/502/1/012068

53. Park J, Ko J, Kim H, Hong Y, Yeom H, Park S, et al. The design and testing of a kW-class free-piston Stirling engine for micro-combined heat and power applications. Appl Therm Eng. 2020;164:114504. https://doi.org/10.1016/j.applthermaleng.2019.114504

54. Zhang Y, Xiao H, Zou C, Falcoz Q, Neveu P. Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe. Energy. 2020;193. https://doi.org/10.1016/j.energy.2019.116775

55. Daabo AM, Mahmoud S, Al-Dadah RK. The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications. Energy. 2016;114:513–25. https://doi.org/10.1016/j.energy.2016.08.025

56. Gil R, Monné C, Bernal N, Muñoz M, Moreno F. Thermal model of a dish stirling cavity-receiver. Energies. 2015;8(2):1042–57. https://doi.org/10.3390/en8021042

57. Hussain T, Islam MD, Kubo I, Watanabe T. Study of heat transfer through a cavity receiver for a solar powered advanced Stirling engine generator. Appl Therm Eng. 2016;104:751–7. https://doi.org/10.1016/j.applthermaleng.2016.05.108

58. Li Z, Tang D, Du J, Li T. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility. Appl Therm Eng. 2011;31(10):1780–9. https://doi.org/10.1016/j.applthermaleng.2011.02.023

59. Garrido J, Aichmayer L, Abou-Taouk A, Laumert B. Experimental and numerical performance analyses of a Dish-Stirling cavity receiver: Geometry and operating temperature studies. Sol Energy. 2018;170(March):913–23.

60. Valenti G, Campanari S, Silva P, Fergnani N, Ravidà A, Di Marcoberardino G, et al. Modeling and testing of a micro-cogeneration Stirling engine under diverse conditions of the working fluid. In: Energy Procedia. Elsevier B.V.; 2014. p. 484–7. https://doi.org/10.1016/j.egypro.2014.11.1154

61. Kazimierski Z, Wojewoda J. Comparison of the externally heated air valve engine and the helium Stirling engine. Energy Convers Manag. 2014;80:357–62. https://doi.org/10.1016/j.enconman.2013.12.055

62. Dong S, Shen G, Xu M, Zhang S, An L. The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine. Energy. 2019;181:378–86. https://doi.org/10.1016/j.energy.2019.05.142

63. Shufat SA, Kurt E, Cinar C, Aksoy F, Hançerlioğulları A, Solmaz H. Exploration of a Stirling engine and generator combination for air and helium media. Appl Therm Eng. 2019;150(April 2018):738–49. https://doi.org/10.1016/j.applthermaleng.2019.01.053

64. Dai DD, Yuan F, Long R, Liu ZC, Liu W. Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator. Energy Convers Manag. 2018;158(December 2017):60–9. https://doi.org/10.1016/j.enconman.2017.12.032

65. Carter D, Wechner E. The Free Piston Power Pack: Sustainable power for hybrid electric vehicles. SAE Tech Pap. 2003;(724). https://doi.org/10.4271/2003-01-3277

66. Zhao Z, Wang S, Zhang S, Zhang F. Thermodynamic and energy saving benefits of hydraulic free-piston engines. Energy. 2016;102:650–9. http://dx.doi.org/10.1016/j.energy.2016.02.018

67. Wang Q, Wu F, Zhao Y, Bai J, Huang R. Study on combustion characteristics and ignition limits extending of micro free-piston engines. Energy. 2019;179:805–14. https://doi.org/10.1016/j.energy.2019.05.003

68. Rinderknecht F. A highly efficient energy converter for a hybrid vehicle concept - Focused on the linear generator of the next generation. In: 2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies, EVER 2013. 2013. https://doi.org/10.1109/EVER.2013.6521533

69. Hansson J, Leksell M. Performance of a Series Hybrid Electric Vehicle with a Free-Piston Energy Converter. In: 2006 IEEE Vehicle Power and Propulsion Conference, VPPC 2006. https://doi.org/10.1109/VPPC.2006.364342

70. Ngwaka U, Smallbone A, Jia B, Lawrence C, Towell B, Roy S, et al. Evaluation of performance characteristics of a novel hydrogen-fuelled free-piston engine generator. Int J Hydrogen Energy. 2021;46(66):33314–24.

71. Yamin JAA, Dado MH. Performance simulation of a four-stroke engine with variable stroke-length and compression ratio. Appl Energy [Internet]. 2004;77(4):447–63. https://doi.org/10.1016/S0306-2619(03)00004-7.

72. Werner M, Halbedel B. Optimization of NdFeB Magnet Arrays for Improvement of Lorentz Force Velocimetry. IEEE Trans Magn. 2012;48(11):2925–8. https://doi.org/10.1109/TMAG.2012.2196500

73. Liu CT, Lin HN, Yeh HC, Hwang CC. Optimal design of a direct driven slotless tubular linear generator for renewable energy extraction. In: Journal of Physics: Conference Series. 2011. p. 1–5. https://doi.org/10.1088/1742-6596/266/1/012075

74. Abdalla I, Zainal EZA, Ramlan NA, Firmansyah, Aziz ARA, Heikal M. Free piston linear generator for low grid power generation. In: MATEC Web of Conferences. 2017. p. 1–12. https://doi.org/10.1051/matecconf/201713102007

75. Zhang Z, Zhang X, Rasim Y, Wang C, Du B, Yuan Y. Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators. Appl Energy. 2016;164(October 2015):152–61. https://doi.org/10.1016/j.apenergy.2015.11.096

76. Hao X, Xing P, Bai L. Design and analysis of moving magnet synchronous surface motor with linear Halbach array. In: Procedia Engineering. 2011. p. 108–18. https://doi.org/10.1016/j.proeng.2011.08.1059

77. Habib A, Che HS, Abd Rahim N, Tousizadeh M, Sulaiman E. A fully coreless Multi-Stator Multi-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays. Alexandria Eng J. 2020;59(2):589–600. https://doi.org/10.1016/j.aej.2020.01.039

78. Zhao T, Zhang H, Hou X, Xu Y, Li J, Shi X, et al. Modelling and validation of a free piston expander-linear generator for waste heat recovery system. Appl Therm Eng. 2019;163(100):114377.

79. Hadžiselimović M, Srpčič G, Brinovar I, Praunseis Z, Seme S, Štumberger B. A novel concept of linear oscillatory synchronous generator designed for a stirling engine. Energy. 2019;180:19–27. https://doi.org/10.1016/j.energy.2019.04.187

80. Rinderknecht F. The linear generator as integral component of an energy converter for electric vehicles. 2019.

81. Arof H, Wijono, Nor KM. Linear generator: Design and simulation. In: National Power Engineering Conference, PECon 2003 - Proceedings. 2003. p. 306–11.

82. Wang J, Wang W, Jewell GW, Howe D. A low-power, linear, permanent-magnet generator/energy storage system. IEEE Trans Ind Electron. 2002;49(3):640–8. https://doi.org/10.1109/TIE.2002.1005391

83. Wang Y, Li Z, Li Q. Investigation of the influence of the clearance of linear alternator on thermo-acoustic electricity generator without resonator. Phys Procedia. 2015;67:705–10. https://doi.org/10.1016/j.phpro.2015.06.119

84. Chen P, Goncharova A, Li J, Frommberger D. Competence-based approaches in curricula: A comparative analysis of Russian and Chinese commercial vocational education and training programmes. 2023 Dec;19(1):63–90. https://doi.org/10.1177/17454999231219840

85. Hamood A, Jaworski AJ, Mao X, Simpson K. Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator. Energy. 2018;144:61–72. https://doi.org/10.1016/j.energy.2017.11.148

86. Cawthorne WR, Famouri P, Chen J, Clark NN, McDaniel TI, Atkinson RJ, et al. Development of a linear alternator-engine for hybrid electric vehicle applications. IEEE Trans Veh Technol. 1999;48(6):1797–802. https://doi.org/10.1109/25.806772

87. De Pasquale G. Energy harvesters for powering wireless systems. Handbook of Mems for Wireless and Mobile Applications. Woodhead Publishing Limited; 2013. 345–400 p. https://doi.org/10.1533/9780857098610.2.345

88. Lee MG, Lee SQ, Gweon DG. Analysis of Halbach magnet array and its application to linear motor. Mechatronics. 2004;14(1):115–28. https://doi.org/10.1016/S0957-4158(03)00015-1

89. Saha CR, Riley PH, Paul J, Yu Z, Jaworski AJ, Johnson CM. Halbach array linear alternator for thermo-acoustic engine. Sensors Actuators, A Phys. 2012;178:179–87. https://doi.org/10.1016/j.sna.2012.01.042

90. Hilton JE, McMurry SM. An adjustable linear Halbach array. J Magn Magn Mater. 2012;324(13):2051–6. https://doi.org/10.1016/j.jmmm.2012.02.014

91. Asy’Ari H, Sarjito, Prasetio SH. A study of generator performance with linear permanent magnet in various coil configuration and rotor-stator geometry. In: AIP Conference Proceedings. 2017. https://doi.org/10.1063/1.4981200

92. de la Bat BJG, Dobson RT, Harms TM, Bell AJ. Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator. Appl Energy. 2020;263(October 2019):114585. https://doi.org/10.1016/j.apenergy.2020.114585

93. Goto S, Moriya K, Kosaka H, Akita T, Hotta Y, Umeno T, et al. Development of free piston engine linear generator system part 2 - Investigation of control system for generator. SAE Tech Pap. 2014;1. https://doi.org/10.4271/2014-01-1193

94. Zare S, Tavakolpour-Saleh AR. Predicting onset conditions of a free piston Stirling engine. Appl Energy. 2020;262(October 2019):114488. https://doi.org/10.1016/j.apenergy.2019.114488

95. Zhu S, Yu G, Li X, Ying M, Yan C, Dai W, et al. Acoustic field characteristics of a free-piston Stirling cryocooler with large cooling capacity at liquid nitrogen temperature. Appl Therm Eng. 2019;147(October 2018):324–35. https://doi.org/10.1016/j.applthermaleng.2018.10.096

96. Collard S. Design and Assembly of a Thermoacoustic Engine Prototype. 2012.

97. Amoedo S, Thebaud E, Gschwendtner M, White D. Novel parameter-based flexure bearing design method. Cryogenics (Guildf). 2016;76:1–9. https://doi.org/10.1016/j.cryogenics.2016.03.002

98. Jomde A, Anderson A, Bhojwani V, Kharadi F, Deshmukh S. Parametric Analysis of Flexure Bearing for Linear Compressor. In: Materials Today: Proceedings. Elsevier Ltd; 2017. p. 2478–86. https://doi.org/10.1016/j.matpr.2017.02.100

99. Warju W, Drastiawati NS, Ariyanto SR, Nurtanto M. The effect of Titanium Dioxide (TiO2) based metallic catalytic converter on the four-stroke motorcycle engine performance. J Phys Conf Ser. 2021;1747(1). https://doi.org/10.1088/1742-6596/1747/1/012031

100. Güven M, Bedir H, Anlaş G. Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine. Energy Convers Manag. 2019;180(October 2018):411–24. https://doi.org/10.1016/j.enconman.2018.10.096

101. Remiorz L, Kotowicz J, Uchman W. Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump. Energy. 2018;148:134–47. https://doi.org/10.1016/j.energy.2018.01.129

102. Zhu S, Yu G, Li X, Dai W, Luo E. Parametric study of a free-piston Stirling cryocooler capable of providing 350 W cooling power at 80 K. Appl Therm Eng. 2020;174:115101. https://doi.org/10.1016/j.applthermaleng.2020.115101

103. Jia B, Wang Y, Smallbone A, Roskilly AP. Analysis of the scavenging process of a two-stroke free-piston engine based on the selection of scavenging ports or valves. Energies. 2018;11(2):5–7. https://doi.org/10.3390/en11020324

104. Jia B, Mikalsen R, Smallbone A, Roskilly AP. A study and comparison of frictional losses in free-piston engine and crankshaft engines. Appl Therm Eng. 2018;140:217–24. https://doi.org/10.1016/j.applthermaleng.2018.05.018

105. Rozaq F, Wirawan WA, Barokah, Effendy M, Nurtanto M. An analysis of temperature treatment of biodiesel fuel on engine performance. In: 4th International Conference on Vocational Education of Mechanical and Automotive Technology (ICoVEMAT) 2021. 2023. p. 1–6. https://doi.org/10.1063/5.0114486

106. Yuan C, Jing Y, Liu C, He Y. Effect of variable stroke on fuel combustion and heat release of a free piston linear hydrogen engine. Int J Hydrogen Energy. 2019;44(36):20416–25. https://doi.org/10.1016/j.ijhydene.2019.05.232

107. Zhang C, Sun Z. Trajectory-based combustion control for renewable fuels in free piston engines. Appl Energy. 2017;187:72–83.

108. Rozaq F, Wirawan WA, Boedi WH, Sanjaya AD, Nurtanto M. The influence of centrifugal particulate matter reducer on gas opacity and fuel consumption of inspection train. Vol. 1700, Journal of Physics: Conference Series. 2020. p. 12050.

109. Sato M, Yamanaka Y, Bu Y, Nirei M, Murata H, Mizuno T. Operation range of generation braking force to achieve high efficiency considering combustion in a free-piston engine linear generator system. IEEJ J Ind Appl. 2018;7(4):343–50. https://doi.org/10.1541/ieejjia.7.343

110. Yuan C, Feng H, He Y. An experimental research on the combustion and heat release characteristics of a free-piston diesel engine generator. Fuel. 2017;188:390–400. https://doi.org/10.1016/j.fuel.2016.10.057.

Downloads

Published

2025-08-11

How to Cite

1.
Nurtanto M, Farid Mutohhari FM. Technological Mapping and Emerging Applications of Free-Piston Engine Systems: A Comparative Review of FPSE and FPCE Architectures. Salud, Ciencia y Tecnología [Internet]. 2025 Aug. 11 [cited 2025 Aug. 24];5:1957. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1957