Effect of physical exercise on the regulation of glycogenesis: a systematic review
DOI:
https://doi.org/10.56294/saludcyt20251917Keywords:
Physical exercise, Glycogenesis, Glucose metabolism, Insulin, Physical activity, Metabolic regulationAbstract
Introduction: physical activity has been shown to be a crucial element in the regulation of glucose metabolism and glycogenesis, processes that are fundamental to maintaining energy homeostasis. The process of glycogenesis, which involves the generation of glucose from non-glucose precursors, is essential under conditions of prolonged fasting and during recovery after physical activity.
Objective: the purpose of this systematic review is to examine the influence of physical exercise on the regulation of glycogenesis, focusing on research that examines how different types of exercise (aerobic, anaerobic, and resistance) affect this process.
Method: research published between 2000 and 2023 was reviewed, using renowned scientific databases.
Results: the findings suggest that physical exercise regulates glycogenesis through hormonal mechanisms, particularly the modulation of insulin, glucagon, and cortisol.
Conclusion: additionally, variations in the response of glycogenesis based on the intensity and duration of exercise are highlighted. It follows that understanding the role of exercise in the regulation of glycogenesis is essential for the development of therapeutic strategies for the treatment of diabetes and other metabolic conditions.
References
Goff M, Chen G. Long-term treatment with insulin and retinoic acid increased glucose utilization in L6 muscle cells via glycogenesis. Biochem Cell Biol. 2020;98(6):683–697. https://doi:10.1139/bcb-2020-0034
Ren T, Ma A, Zhuo R, et al. Oleoylethanolamide increases glycogen synthesis and inhibits hepatic gluconeogenesis via the LKB1/AMPK pathway in type 2 diabetic model. J Pharmacol Exp Ther. 2020;373(1):81–91. https://doi:10.1124/jpet.119.263004
Safarzad M, Marjani A, Jazi MS, et al. Effect of rubus anatolicus leaf extract on glucose metabolism in hepG2, CRI-D2 and C2C12 cell lines. Diabetes Metab Syndr Obes. 2020;13:1109–1116. https://doi:10.2147/DMSO.S248594
Xiao Q, Li J, Liang X-F, et al. Programming of high-glucose diet acceptance in Chinese perch (Siniperca chuatsi) following an early exposure. Aquac Rep. 2020;18:100534. https://doi:10.1016/j.aqrep.2020.100534
Xiao Z, Chu Y, Qin W. IGFBP5 modulates lipid metabolism and insulin sensitivity through activating AMPK pathway in non-alcoholic fatty liver disease. Life Sci. 2020;256:117997. https://doi:10.1016/j.lfs.2020.117997
Sun HJ, Cao L, Zhu MY, et al. DR-region of Na+/K+-ATPase is a target to ameliorate hepatic insulin resistance in obese diabetic mice. Theranostics. 2020;10(14):6149–6166. https://doi:10.7150/thno.45638
DiNunzio G, Belew GD, Torres AN, et al. Determining the contribution of a high-fructose corn syrup formulation to hepatic glycogen synthesis during ad-libitum feeding in mice. Sci Rep. 2020;10(1):69820. https://doi:10.1038/s41598-020-69820-2
Jin D, Zhang B, Li Q, et al. Effect of punicalagin on multiple targets in streptozotocin/high-fat diet-induced diabetic mice. Food Funct. 2020;11(12):10617–10634. https://doi:10.1039/D0FO01945J
Nicholson M, et al. Physical Activity and Self-Determination towards Exercise among Esports Athletes. Sports Med Open. 2024;10(1):700. https://doi:10.1186/s40798-024-00700-8
Lu SS, Jiang WY, She MH, et al. Melatonin inhibits endogenous glucose via activation of akt in insulin resistant hepg2 cells. Chin Pharm Bull. 2020;36(1):38–41.
Gong H, Gao J, Wang Y, et al. Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells. J Dairy Sci. 2020;103(6):4907–4918. https://doi:10.3168/jds.2019-18181
Juppi HK, et al. Role of menopause transition and physical activity in loss of lean and muscle mass: A follow-up study in middle-aged Finnish women. J Clin Med. 2020;9(5):1588. https://doi:10.3390/jcm9051588
Cui D, et al. Dnmt3a2/dnmt3l overexpression in the dopaminergic system of mice increases exercise behavior. Int J Mol Sci. 2020;21(17):6297. https://doi:10.3390/ijms21176297
Baghersad Renani L, et al. Adiponectin, disease, and exercise: A narrative review. Iran J Endocrinol Metab. 2020;22(3):194–206.
Ives SJ, et al. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol Rep. 2020;8(21):e14630. https://doi:10.14814/phy2.14630
Cornejo MA, et al. Partial Body Mass Recovery After Caloric Restriction Abolishes Improved Glucose Tolerance in Obese, Insulin Resistant Rats. Front Endocrinol (Lausanne). 2020;11:363. https://doi:10.3389/fendo.2020.00363
Kaltsatou A, et al. Effects of exercise-heat stress on circulating stress hormones and interleukin-6 in young and older men. Temperature. 2020;7(4):389–393. https://doi:10.1080/23328940.2020.1774411
Amaral LSDB, et al. Influence of exercise training on diabetic kidney disease: A brief physiological approach. Exp Biol Med. 2020;245(13):1142–1154. https://doi:10.1177/1535370220924767
Bayat M, et al. A comparative study of the antidiabetic effect of two training protocols in diabetic rats. Horm Mol Biol Clin Investig. 2020;41(2). https://doi:10.1515/hmbci-2019-0072
Agostinis-Sobrinho C, et al. High levels of adiponectin attenuate the detrimental association of adiposity with insulin resistance in adolescents. Nutr Metab Cardiovasc Dis. 2020;30(5):822–828. https://doi:10.1016/j.numecd.2020.01.015
Guest AJ, et al. Cardiometabolic risk factors and mental health status among truck drivers: A systematic review. BMJ Open. 2020;10(10):e038993. https://doi:10.1136/bmjopen-2020-038993
Haghighat N, et al. The effect of 12 weeks of euenergetic high-protein diet in regulating appetite and body composition of women with normal-weight obesity: A randomized controlled trial. Br J Nutr. 2020;124(10):1044–1051. https://doi:10.1017/S0007114520001991
Dibay Moghadam S, et al. Plasma lipidomic profiles after a low and high glycemic load dietary pattern in a randomized controlled crossover feeding study. Metabolomics. 2020;16(12):122. https://doi:10.1007/s11306-020-01758-4
Loustau T, et al. Murine double minute-2 mediates exercise-induced angiogenesis in adipose tissue of diet-induced obese mice. Microvasc Res. 2020;130:104003. https://doi:10.1016/j.mvr.2020.104003
Lénárt K, et al. Transglutaminase 2 has metabolic and vascular regulatory functions revealed by in vivo activation of alpha1-adrenergic receptor. Int J Mol Sci. 2020;21(11):3865. https://doi:10.3390/ijms21113865
Moustafa A, Arisha AH. Swim therapy-induced tissue specific metabolic responses in male rats. Life Sci. 2020;262:118516. https://doi:10.1016/j.lfs.2020.118516
Larsen SC, et al. Consistent sleep onset and maintenance of body weight after weight loss: An analysis of data from the NoHoW trial. PLoS Med. 2020;17(7):e1003168. https://doi:10.1371/journal.pmed.1003168
Tripodi L, et al. Flavonoids and omega3 prevent muscle and cardiac damage in Duchenne muscular dystrophy animal model. Cells. 2021;10(11):2917. https://doi:10.3390/cells10112917
Bester R, et al. Characterizing marathon-induced metabolic changes using 1H-NMR metabolomics. Metabolites. 2021;11(10):656. https://doi:10.3390/metabo11100656
Wu FL, et al. Microvascular control mechanism of the plantar foot in response to different walking speeds and durations. Int J Low Extrem Wounds. 2021;20(4):327–336. https://doi:10.1177/15347346211023609
Riddle MC, et al. Consensus report: Definition and interpretation of remission in type 2 diabetes. Diabetes Care. 2021;44(10):2438–2444. https://doi:10.2337/dci21-0034
Lhamyani S, et al. miR-21 mimic blocks obesity in mice: A novel therapeutic option. Mol Ther Nucleic Acids. 2021;26:401–416. https://doi:10.1016/j.omtn.2021.08.013
Miao Y, et al. Novel adipokine asprosin modulates browning and adipogenesis in white adipose tissue. J Endocrinol. 2021;249(2):83–93. https://doi:10.1530/JOE-21-0094
Chan JS, et al. Blood glucose concentration is unchanged during exposure to acute normobaric hypoxia in healthy humans. Physiol Rep. 2021;9(15):e14932. https://doi:10.14814/phy2.14932
Uchida A, et al. Oral limonite supplement ameliorates glucose intolerance in diabetic and obese mice. J Inflamm Res. 2021;14:3089–3105. https://doi:10.2147/JIR.S320249
Vallejo-Curto MDC, et al. Proteomic and metabolic profiling of chronic patients with schizophrenia induced by a physical activity program: Pilot study. Rev Psiquiatr Salud Ment. 2021;14(3):125–138. https://doi:10.1016/j.rpsm.2021.02.003
Bourdier P, et al. How interdisciplinary research can help addressing the obesity epidemic. Cah Nutr Diet. 2021;56(1):51–58. https://doi:10.1016/j.cnd.2020.10.003
Xu K, et al. Distinct metabolite profiles of adiposity indices and their relationships with habitual diet in young adults. Nutr Metab Cardiovasc Dis. 2021;31(7):2122–2130. https://doi:10.1016/j.numecd.2021.03.016
Mukherjee U, Napier C, Oldewage-Theron W. 'Drink clean, safe water...': a food-based dietary guideline for the elderly in South Africa. S Afr J Clin Nutr. 2021;34(S1):S9–S14. https://doi:10.1080/16070658.2021.1920968
Kantorowicz M, et al. Nordic walking at maximal fat oxidation intensity decreases circulating asprosin and visceral obesity. Front Physiol. 2021;12:726783. https://doi:10.3389/fphys.2021.726783
Tessaris D, et al. Multidisciplinary approach for hypothalamic obesity in children and adolescents: A preliminary study. Children (Basel). 2021;8(7):531. https://doi:10.3390/children8070531
Thomsen CF, et al. Intensive lifestyle intervention increases plasma midregional proatrial natriuretic peptide concentrations in overweight children. J Am Heart Assoc. 2021;10(13):e020676. https://doi:10.1161/JAHA.120.020676
Bittel DC, et al. Deficits in the skeletal muscle transcriptome and mitochondrial coupling in progressive diabetes-induced CKD. Diabetes. 2021;70(5):1130–1144. https://doi:10.2337/db20-1092
Wang Y, et al. Gut microbiota and host plasma metabolites in association with blood pressure in Chinese adults. Hypertension. 2021;77(2):706–717. https://doi:10.1161/HYPERTENSIONAHA.120.16484
Fan Y, et al. Cotton transcriptome analysis reveals novel biological pathways under sodium bicarbonate stress. Genomics. 2021;113(3):1157–1169. https://doi:10.1016/j.ygeno.2021.01.019
Pols T, et al. Enzymology of the pathway for ATP production by arginine breakdown. FEBS J. 2021;288(1):293–309. https://doi:10.1111/febs.15396
Li X, et al. A metabolomic study of the analgesic effect of lappaconitine hydrobromide on inflammatory pain. Metabolites. 2022;12(10):923. https://doi:10.3390/metabo12100923
Kolieb E, et al. Vitamin D and swimming exercise prevent obesity in rats via FATP4 and TLR4. Int J Environ Res Public Health. 2022;19(21):13740. https://doi:10.3390/ijerph192113740
Thomas MS, et al. Dietary influences on gut microbiota with a focus on metabolic syndrome. Metab Syndr Relat Disord. 2022;20(8):429–439. https://doi:10.1089/met.2022.0018
McGowan EM, et al. Impact of 4 weeks of western diet and aerobic exercise on skeletal muscle respiration. Physiol Rep. 2022;10(24):e15543. https://doi:10.14814/phy2.15543
Ghanemi A, et al. Secreted protein acidic and rich in cysteine as an exercise-induced gene. Genes. 2022;13(6):1014. https://doi:10.3390/genes13061014
Santiago JA, et al. Physical activity rewires the human brain against neurodegeneration. Int J Mol Sci. 2022;23(11):6203. https://doi:10.3390/ijms23116203
Beyene HB, et al. Metabolic phenotyping of BMI to characterize cardiometabolic risk. Nat Commun. 2023;14(1):6880. https://doi:10.1038/s41467-023-42455-9
Behera S, Das S. Environmental impacts of microplastic and role of plastisphere microbes. Chemosphere. 2023;334:138928. https://doi:10.1016/j.chemosphere.2023.138928
Adamczak L, et al. Physical activity, gestational weight gain in obese patients with early gestational diabetes and the perinatal outcome. BMC Pregnancy Childbirth. 2024;24(1):6296. https://doi:10.1186/s12884-024-06296-x
Pélissier L, et al. Postprandial energy metabolism is modulated by low-intensity walking exercise in fasted individuals. Nutr Res. 2024;123:55–66. https://doi:10.1016/j.nutres.2024.02.007
Skalska M, et al. Metabolic control level and glucose variability in adolescents with type 1 diabetes during exercise. Eur Rev Med Pharmacol Sci. 2024;28(5):1987–1997. https://doi:10.26355/eurrev_202403_35528
Radenković S, et al. Improvement of blood glucose control and reduction of hypoglycemia in type 1 diabetic patients. Vojnosanit Pregl. 2024;81(8):480–490. https://doi:10.2298/VSP220215054R
Ma E, et al. Inhibition of a novel Dickkopf-1-LDL receptor-related proteins axis prevents diabetic cardiomyopathy. Eur Heart J. 2024;45(9):688–703. https://doi:10.1093/eurheartj/ehae178
Marín BDM, et al. Body dysmorphia: instruments for its diagnosis. A systematic review. Retos. 2024;51:243–250. https://doi:10.47197/retos.v51.99356
Valverde-Sánchez A, et al. Physical self-concept and body satisfaction in adolescents: a systematic review. Retos. 2024;51:348–355. https://doi:10.47197/retos.v51.98645
Gittermann LMT, Pinto JG, von Oetinger Giacoman A. Effect of interruption in sedentary behavior on glycemic control in gestational diabetes. Rev Peru Ginecol Obstet. 2023;69(1):1–7. https://doi:10.31403/rpgo.v69i2436
Kargarshuroki M, Sadeghian HA, Fatehi F, et al. The effect of diabetes training through social networks on metabolic control of individuals with type 2 diabetes. J Prev Med Hyg. 2023;64(4):E499–E506. https://doi:10.15167/2421-4248/jpmh2023.64.4.2913
Hao Y, Fu Y, Sun L, et al. A novel fasting regimen revealed protein reservation and complement C3 down-regulation after 14-day's continuous dietary deprivation. Front Endocrinol. 2023;14:1150547. https://doi:10.3389/fendo.2023.1150547
Cisterna B, Lofaro FD, Lacavalla MA, et al. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front Cell Dev Biol. 2023;11:1273309. https://doi:10.3389/fcell.2023.1273309
Murthy VL, Mosley JD, Perry AS, et al. Metabolic liability for weight gain in early adulthood. Cell Rep Med. 2024;5(5):101548. https://doi:10.1016/j.xcrm.2024.101548
McGee SL, Hargreaves M. Exercise performance and health: Role of GLUT4. Free Radic Biol Med. 2024;224:479–483. https://doi:10.1016/j.freeradbiomed.2024.04.019
Nemoto S, Kubota T, Ishikura T, et al. Characterization of metabolic phenotypes and distinctive genes in mice with low-weight gain. FASEB J. 2024;38(1):e30165. https://doi:10.1096/fj.202300794RR
Bond DS, Smith KE, Schumacher LM, et al. Associations of daily weight management-focused social support with weight loss. Obes Sci Pract. 2024;10(1):717. https://doi:10.1002/osp4.717
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vilma Raffo Babici, Juan Tarquino Calderón Cisneros, Liliana Alexandra Cortez Suárez, Diana Haydee Serafín Álvarez (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.