Evaluation of the biocompatibility of solid lipid nanoparticles of Myristyl Myristate in human blood cells
DOI:
https://doi.org/10.56294/saludcyt20251814Keywords:
solid lipid nanoparticles, biocompatibility, myristyl myristate, cytotoxicity, genotoxicity, oxidative stressAbstract
Introduction: solid lipid nanoparticles (SLNs) have emerged as promising drug delivery systems, standing out for their biocompatibility and stability.
Objective: to evaluate the biocompatibility of SLNs formulated with myristyl myristate (MM) in human lymphocytes through cytotoxicity, genotoxicity, and oxidative stress assays.
Methods: SLNs were synthesized using sonication and characterized in terms of size, polydispersity index, and zeta potential. Concentrations ranging from 18.75 to 300.00 μg/ml were selected for in vitro assays. Cell viability was assessed using the MTT assay, while genotoxicity was analyzed through the Comet assay. Lipid peroxidation was measured by quantifying thiobarbituric acid reactive substances (TBARs).
Results: after 24 hours of exposure, cell viability remained above 90% at all concentrations. However, after 48 hours, viability decreased at concentrations of 150 and 300 μg/ml. No significant DNA damage or changes in lipid peroxidation levels were observed under any tested condition.
Conclusion: these findings suggest that MM-based SLNs exhibit high in vitro biocompatibility, with no relevant short-term cytotoxic or genotoxic effects. However, further studies in in vivo models and under prolonged exposure conditions are necessary to assess their safety for biomedical applications.
References
1. Park G, Annaev M, Zhang KK, Lee H. Consideration of nanomedicine, its past and future, and its application possibilities. J Med Imaging. 2023;6(1):27-34. https://doi.org/10.31916/sjmi2023-01-04
2. Meng X, Zhu G, Yang YG, Sun T. Targeted delivery strategies: The interactions and applications of nanoparticles in liver diseases. Biomed Pharmacother. 2024;175:116702. https://doi.org/10.1016/j.biopha.2024.116702
3. Singh R, Long FR, Kakkar A. Nano-bio interactions and drug delivery using soft nanoparticles: A new paradigm in pharmaceutical cargo release. RSC Pharmaceutics. 2024;2(1):44-58. https://doi.org/10.1039/d4pm00170b
4. Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, et al. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother. 2024;180:117465. https://doi.org/10.1016/j.biopha.2024.117465
5. Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics. 2023;15(6). https://doi.org/10.3390/pharmaceutics15061593
6. Zhao B, Gu S, Du Y, Shen M, Liu X, Shen Y. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int J Pharm. 2018;535(1-2). https://doi.org/10.1016/j.ijpharm.2017.10.040
7. Musielak E, Feliczak-Guzik A, Nowak I. Optimization of the conditions of solid lipid nanoparticles (SLN) synthesis. Molecules. 2022;27(7). https://doi.org/10.3390/molecules27072202
8. Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7. https://doi.org/10.3389/fmolb.2020.587997
9. Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9. https://doi.org/10.3389/fchem.2021.580118
10. Bailon-Moscoso N, Romero-Benavides JC. Genotoxicidad de los nanomateriales, grandes discrepancias y desafíos. Rev Toxicol. 2016;33(1)
11. Barbosa MC, Aiassa D, Mañas F. Evaluación de daño al ADN en leucocitos de sangre periférica humana expuestos al herbicida glifosato. Rev Int Contam Ambient. 2017;33(3):403-10. https://doi.org/10.20937/RICA.2017.33.03.04
12. Le Roux G, Moche H, Nieto A, Benoit JP, Nesslany F, Lagarce F. Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol In Vitro. 2017;41:189-99. https://doi.org/10.1016/J.TIV.2017.03.007
13. Radhakrishnan R, Kulhari H, Pooja D, Gudem S, Bhargava S, Shukla R, Sistla R. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids. 2016. https://doi.org/10.1016/j.chemphyslip.2016.05.006
14. Doktorovova S, Silva AM, Gaivão I, Souto EB, Teixeira JP, Martins-Lopes P. Comet assay reveals no genotoxicity risk of cationic solid lipid nanoparticles. J Appl Toxicol. 2014;34(4):395-403. https://doi.org/10.1002/JAT.2961
15. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-91. http://www.ncbi.nlm.nih.gov/pubmed/3345800
16. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52(C):302-10. https://doi.org/10.1016/S0076-6879(78)52032-6
17. Marcincak S, Sokol J, Turek P, Rozanska H, Dicakova Z, Mate D, et al. Comparative evaluation of analytical techniques to quantify malondialdehyde in broiler meat. Bulletin of the Veterinary Institute in Pulawy. 2003;47(2):491-6.
18. Stahl MA, Lüdtke FL, Grimaldi R, Gigante ML, Ribeiro APB. Characterization and stability of solid lipid nanoparticles produced from different fully hydrogenated oils. Food Res Int. 2024;176:113821. https://doi.org/10.1016/J.FOODRES.2023.113821
19. Ridolfi DM, Marcato PD, Machado D, Silva RA, Justo GZ, Durán N. In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells. J Phys Conf Ser. 2011;304:11-5. https://doi.org/10.1088/1742-6596/304/1/012032
20. Fessard V, Nesslany F. From basic research to new tools and challenges for the genotoxicity testing of nanomaterials. Nanomaterials. 2020;10(10):1-3. https://doi.org/10.3390/nano10102073
21. Valdiglesias V. Cytotoxicity and genotoxicity of nanomaterials. Nanomaterials. 2022;12(4). https://doi.org/10.3390/nano12040634
22. Kyadarkunte AY, Patole MS, Pokharkar VB. Cellular interactions and photoprotective effects of idebenone-loaded nanostructured lipid carriers stabilized using PEG-free surfactant. Int J Pharm. 2015;479(1):77-87. https://doi.org/10.1016/j.ijpharm.2014.11.020
23. Xue HY, Liu S, Wong HL. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine. 2014;9(2):295-312. https://doi.org/10.2217/nnm.13.204
24. Sufian MM, Khattak JZK, Yousaf S, Rana MS. Safety issues associated with the use of nanoparticles in human body. Photodiagnosis Photodyn Ther. 2017;19:67-72. https://doi.org/10.1016/j.pdpdt.2017.05.012
25. Cunningham B, Engstrom AE, Harper BJ, Harper SL, Mackiewicz MR. Silver nanoparticles stable to oxidation and silver ion release show size-dependent toxicity in vivo. Nanomaterials. 2021;11(6). https://doi.org/10.3390/nano11061516
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fernando Mañas, Ignacio Velzi, Dardo Roma, María Paula Tonini, Noelia Campra, Germán Islan, Noelia Cariddi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.