Role of protease inhibitors in the pathogenesis of alcoholic neuropathy
DOI:
https://doi.org/10.56294/saludcyt202119Keywords:
Alcohol, Protease inhibitors, Alcoholic Neuropathy, Alcoholic Neuropathy/Pathogenesis, Peripheral NeuropathyAbstract
Background: alcoholic neuropathy is a common complication among patients with alcohol abuse disorder. It is often asymptomatic and the frequency of occurrence varies. We propose that the deficit of protease inhibitors could be a causal factor of alcoholic neuropathy. If this is true, it would contribute to understanding of the pathophysiology, explain variability in individual response, and explain variability in individual response, and facilitate the search for prevention therapy.
Development: alcoholic neuropathy is characterized by a pattern of symmetrical polyneuropathy with great involvement of the lower extremities. The mechanisms of axonal degeneration due to alcohol consumption are still unclear. It is known that alcohol inhibits protection mechanisms of the nervous system. Here, we discuss that the deficit of protease inhibitors could be a causal factor in the pathogenesis of alcoholic neuropathy. If this is true, it would contribute to an understanding of the pathophysiology, explain variability in individual response, and facilitate the search for prevention therapy.
Conclusions: the protease inhibitors play a significant role in the origin of peripheral neuropathies. There is strong evidence to suggest that proteases and their inhibitors are related to processes that allow the development and maintenance of peripheral nerves, and alterations in their proportions favor the development of anomalies in such structures. The mechanisms through which these molecules trigger the disease are unclear in most cases. An increase in the number of investigations in this area would undoubtedly contribute to preventing and combating a disease which strikes a significant number of people
References
1. World Health Organization. Global status report on alcohol and health. Ginebra: WHO Press; 2014.
2. González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol 2014;20:14660–71. https://doi.org/10.3748/wjg.v20.i40.14660.
3. Harper C. The Neuropathology of Alcohol-Related Brain Damage. Alcohol Alcohol 2009;44:136–40. https://doi.org/10.1093/alcalc/agn102.
4. Koike H, Iijima M, Sugiura M, Mori K, Hattori N, Ito H, et al. Alcoholic neuropathy is clinicopathologically distinct from thiamine-deficiency neuropathy. Ann Neurol 2003;54:19–29. https://doi.org/10.1002/ana.10550.
5. Mellion M, Gilchrist JM, de la Monte S. Alcohol-related peripheral neuropathy: nutritional, toxic, or both? Muscle Nerve 2011;43:309–16. https://doi.org/10.1002/mus.21946.
6. Chen S, Charness ME. Ethanol inhibits neuronal differentiation by disrupting activity-dependent neuroprotective protein signaling. Proc Natl Acad Sci USA 2008;105:19962–7. https://doi.org/10.1073/pnas.0807758105.
7. Dikranian K, Qin Y-Q, Labruyere J, Nemmers B, Olney JW. Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Brain Res Dev Brain Res 2005;155:1–13. https://doi.org/10.1016/j.devbrainres.2004.11.005.
8. Sadrian B, Subbanna S, Wilson DA, Basavarajappa BS, Saito M. Lithium prevents long-term neural and behavioral pathology induced by early alcohol exposure. Neuroscience 2012;206:122–35. https://doi.org/10.1016/j.neuroscience.2011.12.059.
9. Maiya RP, Messing RO. Peripheral systems: neuropathy. Handb Clin Neurol 2014;125:513–25. https://doi.org/10.1016/B978-0-444-62619-6.00029-X.
10. Chopra K, Tiwari V. Alcoholic neuropathy: possible mechanisms and future treatment possibilities. Br J Clin Pharmacol 2012;73:348–62. https://doi.org/10.1111/j.1365-2125.2011.04111.x.
11. Ishibashi S, Yokota T, Shiojiri T, Matunaga T, Tanaka H, Nishina K, et al. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency? J Neurol Neurosurg Psychiatry 2003;74:674–6.
12. Biasi F, Deiana M, Guina T, Gamba P, Leonarduzzi G, Poli G. Wine consumption and intestinal redox homeostasis. Redox Biol 2014;2:795–802. https://doi.org/10.1016/j.redox.2014.06.008.
13. Subramanya SB, Subramanian VS, Said HM. Chronic alcohol consumption and intestinal thiamin absorption: effects on physiological and molecular parameters of the uptake process. Am J Physiol Gastrointest Liver Physiol 2010;299:G23-31. https://doi.org/10.1152/ajpgi.00132.2010.
14. World MJ, Ryle PR, Thomson AD. Alcoholic malnutrition and the small intestine. Alcohol Alcohol 1985;20:89–124.
15. Dedoni S, Olianas MC, Onali P. Interferon-β induces apoptosis in human SH-SY5Y neuroblastoma cells through activation of JAK-STAT signaling and down-regulation of PI3K/Akt pathway. J Neurochem 2010;115:1421–33. https://doi.org/10.1111/j.1471-4159.2010.07046.x.
16. Ke Z-J, Wang X, Fan Z, Luo J. Ethanol Promotes Thiamine Deficiency-Induced Neuronal Death: Involvement of Double-Stranded RNA-activated Protein Kinase. Alcohol Clin Exp Res 2009;33:1097–103. https://doi.org/10.1111/j.1530-0277.2009.00931.x.
17. Wang X, Fan Z, Wang B, Luo J, Ke Z-J. Activation of double-stranded RNA-activated protein kinase by mild impairment of oxidative metabolism in neurons. J Neurochem 2007;103:2380–90. https://doi.org/10.1111/j.1471-4159.2007.04978.x.
18. Farber NB, Creeley CE, Olney JW. Alcohol-induced neuroapoptosis in the fetal macaque brain. Neurobiol Dis 2010;40:200–6. https://doi.org/10.1016/j.nbd.2010.05.025.
19. Marín MP, Esteban-Pretel G, Ponsoda X, Romero AM, Ballestín R, López C, et al. Endocytosis in cultured neurons is altered by chronic alcohol exposure. Toxicol Sci 2010;115:202–13. https://doi.org/10.1093/toxsci/kfq040.
20. Methner DNR, Mayfield RD. Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem 2010;285:10310–7. https://doi.org/10.1074/jbc.M109.029561.
21. Cavaletti G, Jakubowiak AJ. Peripheral neuropathy during bortezomib treatment of multiple myeloma: a review of recent studies. Leuk Lymphoma 2010;51:1178–87. https://doi.org/10.3109/10428194.2010.483303.
22. Corso A, Mangiacavalli S, Varettoni M, Pascutto C, Zappasodi P, Lazzarino M. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res 2010;34:471–4. https://doi.org/10.1016/j.leukres.2009.07.022.
23. Mohty B, El-Cheikh J, Yakoub-Agha I, Moreau P, Harousseau J-L, Mohty M. Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. Haematologica 2010;95:311–9. https://doi.org/10.3324/haematol.2009.012674.
24. Sanada Y, Nakazato T, Suzuki K, Mihara A, Aisa Y, Iwabuchi M, et al. [Severe bortezomib-induced peripheral neuropathy in a patient with multiple myeloma]. Rinsho Ketsueki 2010;51:264–9.
25. Hashimoto N, Yokoyama K, Sadahira K, Ueda T, Tsukada Y, Okamoto S. Itraconazole may increase the risk of early-onset bortezomib-induced peripheral neuropathy. Int J Hematol 2012;96:758–63. https://doi.org/10.1007/s12185-012-1224-5.
26. Ko B-S, Chang T-C, Chen C-H, Liu C-C, Kuo C-C, Hsu C, et al. Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci 2010;86:199–206. https://doi.org/10.1016/j.lfs.2009.12.003.
27. Luo P, Lin M, Lin M, Zhu D, Wang Z, Shen J, et al. Bortezomib induces apoptosis in human neuroblastoma CHP126 cells. Pharmazie 2010;65:213–8.
28. Smith D, Tweed C, Fernyhough P, Glazner GW. Nuclear factor-kappaB activation in axons and Schwann cells in experimental sciatic nerve injury and its role in modulating axon regeneration: studies with etanercept. J Neuropathol Exp Neurol 2009;68:691–700. https://doi.org/10.1097/NEN.0b013e3181a7c14e.
29. Capers KN, Turnacioglu S, Leshner RT, Crawford JR. Antiretroviral therapy-associated acute motor and sensory axonal neuropathy. Case Rep Neurol 2011;3:1–6. https://doi.org/10.1159/000322573.
30. Phillips TJC, Brown M, Ramirez JD, Perkins J, Woldeamanuel YW, Williams AC de C, et al. Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study. Pain 2014;155:1846–60. https://doi.org/10.1016/j.pain.2014.06.014.
31. Chen H, Clifford DB, Deng L, Wu K, Lee AJ, Bosch RJ, et al. Peripheral neuropathy in ART-experienced patients: prevalence and risk factors. J Neurovirol 2013;19:557–64. https://doi.org/10.1007/s13365-013-0216-4.
32. Ellis RJ, Marquie-Beck J, Delaney P, Alexander T, Clifford DB, McArthur JC, et al. Human immunodeficiency virus protease inhibitors and risk for peripheral neuropathy. Ann Neurol 2008;64:566–72. https://doi.org/10.1002/ana.21484.
33. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, et al. Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 2003;23:2284–93.
34. Jin HY, Liu WJ, Park JH, Baek HS, Park TS. Effect of dipeptidyl peptidase-IV (DPP-IV) inhibitor (Vildagliptin) on peripheral nerves in streptozotocin-induced diabetic rats. Arch Med Res 2009;40:536–44. https://doi.org/10.1016/j.arcmed.2009.09.005.
35. Han L-P, Yu D-M, Xie Y. [Effects of lisinopril on diabetic peripheral neuropathy: experiment with rats]. Zhonghua Yi Xue Za Zhi 2008;88:2513–5.
36. Hanif K, Bid HK, Konwar R. Reinventing the ACE inhibitors: some old and new implications of ACE inhibition. Hypertens Res 2010;33:11–21. https://doi.org/10.1038/hr.2009.184.
37. Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Lund DD, Yorek MA. Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin. Obesity (Silver Spring) 2008;16:82–9. https://doi.org/10.1038/oby.2007.19.
38. Yorek MA. The potential role of angiotensin converting enzyme and vasopeptidase inhibitors in the treatment of diabetic neuropathy. Curr Drug Targets 2008;9:77–84.
39. Lin L, Zhang K, Zhang C, Zhang J. [Effect of captopril on the nervous function in rabbits exposed to vibration]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2005;23:175–7.
40. Inoue N, Takai S, Jin D, Okumura K, Okamura N, Kajiura M, et al. Effect of angiotensin-converting enzyme inhibitor on matrix metalloproteinase-9 activity in patients with Kawasaki disease. Clin Chim Acta 2010;411:267–9. https://doi.org/10.1016/j.cca.2009.11.020.
41. Okada M, Kikuzuki R, Harada T, Hori Y, Yamawaki H, Hara Y. Captopril attenuates matrix metalloproteinase-2 and -9 in monocrotaline-induced right ventricular hypertrophy in rats. J Pharmacol Sci 2008;108:487–94.
42. Yamamoto D, Takai S, Hirahara I, Kusano E. Captopril directly inhibits matrix metalloproteinase-2 activity in continuous ambulatory peritoneal dialysis therapy. Clin Chim Acta 2010;411:762–4. https://doi.org/10.1016/j.cca.2010.02.059.
43. Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005;6:931–44. https://doi.org/10.1038/nrn1807.
44. Liu H, Kim Y, Chattopadhyay S, Shubayev I, Dolkas J, Shubayev VI. Matrix metalloproteinase inhibition enhances the rate of nerve regeneration in vivo by promoting dedifferentiation and mitosis of supporting schwann cells. J Neuropathol Exp Neurol 2010;69:386–95. https://doi.org/10.1097/NEN.0b013e3181d68d12.
45. Mawrin C, Brunn A, Röcken C, Schröder JM. Peripheral neuropathy in systemic lupus erythematosus: pathomorphological features and distribution pattern of matrix metalloproteinases. Acta Neuropathol 2003;105:365–72. https://doi.org/10.1007/s00401-002-0653-2.
46. Santiesteban-Freixas R, Serrano-Verdura C, Gutiérrez-Gil J, Luis-González S, González-Quevedo A, Francisco-Plasencia M, et al. The neuropathy epidemic in Cuba: eight years of investigation and follow-up. Rev Neurol 2000;31:549–66.
47. Geraghty P, Rogan MP, Greene CM, Brantly ML, O’Neill SJ, Taggart CC, et al. Alpha-1-antitrypsin aerosolised augmentation abrogates neutrophil elastase-induced expression of cathepsin B and matrix metalloprotease 2 in vivo and in vitro. Thorax 2008;63:621–6. https://doi.org/10.1136/thx.2007.088559.
48. Muroski ME, Roycik MD, Newcomer RG, Van den Steen PE, Opdenakker G, Monroe HR, et al. Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotechnol 2008;9:34–46.
49. Schmechel DE. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: blessing or curse? Neurotoxicology 2007;28:899–914. https://doi.org/10.1016/j.neuro.2007.05.011.
50. Preedy VR, Adachi J, Ueno Y, Ahmed S, Mantle D, Mullatti N, et al. Alcoholic skeletal muscle myopathy: definitions, features, contribution of neuropathy, impact and diagnosis. Eur J Neurol 2001;8:677–87.
51. Chrostek L, Cylwik B, Krawiec A, Korcz W, Szmitkowski M. Relationship between serum sialic acid and sialylated glycoproteins in alcoholics. Alcohol Alcohol 2007;42:588–92. https://doi.org/10.1093/alcalc/agm048.
52. Kok KF, Wahab PJ, de Vries RA. [Heterozygosity for alpha1-antitrypsin deficiency as a cofactor in the development of chronic liver disease]. Ned Tijdschr Geneeskd 2005;149:2057–61.
53. Ramos C, Cisneros J, Gonzalez-Avila G, Becerril C, Ruiz V, Montaño M. Increase of matrix metalloproteinases in woodsmoke-induced lung emphysema in guinea pigs. Inhal Toxicol 2009;21:119–32. https://doi.org/10.1080/08958370802419145.
54. Wang L, Tao Y, Li S, Chen G, Liu C. [Effects of salvianolic acid B on lipid peroxidation and metalloproteinase-2 activity in fibrotic liver in rat]. Zhongguo Zhong Yao Za Zhi 2010;35:71–5.
55. Kobayashi H, Chattopadhyay S, Kato K, Dolkas J, Kikuchi S-I, Myers RR, et al. MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci 2008;39:619–27. https://doi.org/10.1016/j.mcn.2008.08.008.
56. Oliveira AL, Antunes SLG, Teles RM, Costa da Silva AC, Silva TP da, Brandão Teles R, et al. Schwann cells producing matrix metalloproteinases under Mycobacterium leprae stimulation may play a role in the outcome of leprous neuropathy. J Neuropathol Exp Neurol 2010;69:27–39. https://doi.org/10.1097/NEN.0b013e3181c6515c.
57. Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010;88:764–73. https://doi.org/10.1002/jnr.22257.
58. Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 2009;44:115–27. https://doi.org/10.1093/alcalc/agn079.
59. Xie P, Cao Y-S, Su P, Li Y-H, Gao Z-L, Borst MM. Expression of toll-like receptor 4, tumor necrosis factor- alpha, matrix metalloproteinase-9 and effects of benazepril in patients with acute coronary syndromes. Clin Med Insights Cardiol 2010;4:89–93. https://doi.org/10.4137/CMC.S5659.
60. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 2010;30:8285–95. https://doi.org/10.1523/JNEUROSCI.0976-10.2010.
61. Kelley KW, Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun 2011;25 Suppl 1:S13-20. https://doi.org/10.1016/j.bbi.2010.12.013.
62. Jourquin J, Tremblay E, Bernard A, Charton G, Chaillan FA, Marchetti E, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory. Eur J Neurosci 2005;22:2569–78. https://doi.org/10.1111/j.1460-9568.2005.04426.x.
63. Forough R. Correlation between heavy alcohol consumption and elevation of matrix metalloproteinases. Eur J Clin Invest 2002;32:219–20.
64. Sillanaukee P, Kalela A, Seppä K, Höyhtyä M, Nikkari ST. Matrix metalloproteinase-9 is elevated in serum of alcohol abusers. Eur J Clin Invest 2002;32:225–9.
65. Jacqueminet S, Ben Abdesselam O, Chapman M-J, Nicolay N, Foglietti M-J, Grimaldi A, et al. Elevated circulating levels of matrix metalloproteinase-9 in type 1 diabetic patients with and without retinopathy. Clin Chim Acta 2006;367:103–7. https://doi.org/10.1016/j.cca.2005.11.029.
66. Haorah J, Schall K, Ramirez SH, Persidsky Y. Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanism for neurodegeneration associated with alcohol abuse. Glia 2008;56:78–88. https://doi.org/10.1002/glia.20596.
67. Das A, Guyton MK, Butler JT, Ray SK, Banik NL. Activation of calpain and caspase pathways in demyelination and neurodegeneration in animal model of multiple sclerosis. CNS Neurol Disord Drug Targets 2008;7:313–20.
68. el-Fawal HA, Correll L, Gay L, Ehrich M. Protease activity in brain, nerve, and muscle of hens given neuropathy-inducing organophosphates and a calcium channel blocker. Toxicol Appl Pharmacol 1990;103:133–42.
69. Cagnon L, Braissant O. Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells. Neurobiol Dis 2008;32:281–92. https://doi.org/10.1016/j.nbd.2008.07.012.
70. Song F, Zhang C, Wang Q, Zeng T, Xie K. Alterations in neurofilaments content and calpains activity of sciatic nerve of carbon disulfide-treated rats. Arch Toxicol 2009;83:587–94. https://doi.org/10.1007/s00204-008-0399-2.
71. Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H. Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 2010;113:1002–11. https://doi.org/10.1111/j.1471-4159.2010.06664.x.
72. Nangle MR, Cotter MA, Cameron NE. The calpain inhibitor, A-705253, corrects penile nitrergic nerve dysfunction in diabetic mice. Eur J Pharmacol 2006;538:148–53. https://doi.org/10.1016/j.ejphar.2006.03.068.
73. Hill CE, Guller Y, Raffa SJ, Hurtado A, Bunge MB. A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord. J Neurotrauma 2010;27:1685–95. https://doi.org/10.1089/neu.2010.1272.
74. O’Hanlon GM, Humphreys PD, Goldman RS, Halstead SK, Bullens RWM, Plomp JJ, et al. Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside antibody-mediated motor nerve terminal injury. Brain 2003;126:2497–509. https://doi.org/10.1093/brain/awg254.
75. Carloni S, Mazzoni E, Balduini W. Caspase-3 and calpain activities after acute and repeated ethanol administration during the rat brain growth spurt. J Neurochem 2004;89:197–203. https://doi.org/10.1111/j.1471-4159.2004.02341.x.
76. Rajgopal Y, Vemuri MC. Calpain activation and alpha-spectrin cleavage in rat brain by ethanol. Neurosci Lett 2002;321:187–91.
Published
Issue
Section
License
Copyright (c) 2023 Javier Gonzalez Argote (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.