Essential oils and microencapsulation: mechanisms and efficacy in the inhibition of biofilms and pathogens

Authors

DOI:

https://doi.org/10.56294/saludcyt20251799

Keywords:

Essential oils, Antimicrobial activity, Biofilms, Microencapsulation, Chemical composition, Antimicrobial mechanisms

Abstract

Introduction
Essential oils (EOs) have been the subject of extensive investigation due to their diverse biological properties, including antimicrobial, antioxidant, fungicidal, and anti-inflammatory activities. Synthesized by over 17 500 plant species, EOs are intricate mixtures of terpenes, terpenoids, and phenylpropanoids, among other bioactive compounds. These attributes render EOs as promising candidates for addressing microbial infections, particularly those associated with biofilms, which account for a substantial proportion of nosocomial infections and microbial infections at large.

Methods
A systematic literature search was performed using the PubMed and SciELO databases. Articles were selected based on predefined inclusion criteria, emphasizing studies that explored the chemical composition and antimicrobial mechanisms of EOs, the processes of biofilm formation, their structural characteristics, resistance mechanisms, and the application of microencapsulation techniques to enhance EO stability and antimicrobial efficacy.

Results
A total of 30 articles met the inclusion criteria and were subjected to detailed review. These studies provide a comprehensive analysis of the antimicrobial potential of EOs and demonstrate the significant enhancement of their efficacy through microencapsulation. The compiled data enable the assessment of both the inherent antimicrobial activity of EOs and the mechanisms by which microencapsulation amplifies this activity.

Conclusions
This review underscores the chemical composition and antimicrobial mechanisms of EOs, as well as the dynamics of biofilm formation and resistance. Furthermore, it highlights the role of microencapsulation as a strategy to preserve and enhance the antimicrobial properties of EOs.

References

1. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol. 2008;46(2):446–475.

2. Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–561.

3. Romero-Montero A, Melgoza-Ramírez LJ, Ruíz-Aguirre JA, Chávez-Santoscoy A, Magaña JJ, Cortés H, et al. Essential-Oils-Loaded Biopolymeric Nanoparticles as Strategies for Microbial and Biofilm Control: A Current Status. Int J Mol Sci. 2024;25(1).

4. de Jesus Freitas T, Assunção LS, de Lima Silva V, Oliveira TS, Conceição ISR, Machado BAS, et al. Prospective Study on Microencapsulation of Oils and Its Application in Foodstuffs. Recent Pat Nanotechnol. 2021;16(3):219–234.

5. Sousa VI, Parente JF, Marques JF, Forte MA, Tavares CJ. Microencapsulation of Essential Oils: A Review. Polymers. 2022;14(9):1937.

6. de Melo AM, Barbi RCT, Almeida FLC, de Souza WFC, Cavalcante AM, de M de Souza HJB, et al. Effect of Microencapsulation on Chemical Composition and Antimicrobial, Antioxidant, and Cytotoxic Properties of Lemongrass (Cymbopogon flexuosus) Essential Oil. Food Technol Biotechnol. 2022;60(3):359-371.

7. Chmiel M, Drzymała G, Bocianowski J, Komnenić A, Baran A, Synowiec A. Maltodextrin-Coated Peppermint and Caraway Essential Oils: Effects on Soil Microbiota. Plants. 2022;11(23):3147.

8. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/J.FCT.2007.09.106

9. Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents—myth or real alternative? In Molecules (Vol. 24, Issue 11). MDPI AG. https://doi.org/10.3390/molecules24112130

10. Stringaro, A., Colone, M., & Angiolella, L. (2018). Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. Medicines, 5(4), 112. https://doi.org/10.3390/medicines5040112

11. Waseem, R., & Low, K. H. (2015). Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry. In Journal of Separation Science (Vol. 38, Issue 3, pp. 483–501). Wiley-VCH Verlag. https://doi.org/10.1002/jssc.201400724

12. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. In Pharmaceuticals (Vol. 6, Issue 12, pp. 1451–1474). MDPI AG. https://doi.org/10.3390/ph6121451

13. Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S. M., & Ajami, M. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. In Critical Reviews in Microbiology (Vol. 43, Issue 6, pp. 668–689). Taylor and Francis Ltd. https://doi.org/10.1080/1040841X.2017.1295225

14. Tardugno, R., Serio, A., Pellati, F., D’Amato, S., Chaves López, C., Bellardi, M. G., Di Vito, M., Savini, V., Paparella, A., & Benvenuti, S. (2019). Lavandula x intermedia and Lavandula angustifolia essential oils: phytochemical composition and antimicrobial activity against foodborne pathogens. Natural Product Research, 33(22), 3330–3335. https://doi.org/10.1080/14786419.2018.1475377

15. De Martino, L., De Feo, V., & Nazzaro, F. (2009). Chemical composition and in vitro antimicrobial and mutagenic activities of seven lamiaceae essential oils. Molecules, 14(10), 4213–4230. https://doi.org/10.3390/molecules14104213

16. Lagha, R., Abdallah, F. Ben, AL-Sarhan, B. O., & Al-Sodany, Y. (2019). Antibacterial and Biofilm Inhibitory Activity of Medicinal Plant Essential Oils Against Escherichia coli Isolated from UTI Patients. Molecules, 24(6). https://doi.org/10.3390/molecules24061161

17. Romero-Montero, A., Melgoza-Ramírez, L. J., Ruíz-Aguirre, J. A., Chávez-Santoscoy, A., Magaña, J. J., Cortés, H., Leyva-Gómez, G., & Del Prado-Audelo, M. L. (2024). Essential-Oils-Loaded Biopolymeric Nanoparticles as Strategies for Microbial and Biofilm Control: A Current Status. In International Journal of Molecular Sciences (Vol. 25, Issue 1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms25010082

18. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179

19. de Jesus Freitas, T., Assunção, L. S., de Lima Silva, V., Oliveira, T. S., Conceição, I. S. R., Machado, B. A. S., Nunes, I. L., Otero, D. M., & Ribeiro, C. D. F. (2021). Prospective Study on Microencapsulation of Oils and Its Application in Foodstuffs. Recent Patents on Nanotechnology, 16(3), 219–234. https://doi.org/10.2174/1872210515666210422123001

20. Li, M., Guo, Q., Lin, Y., Bao, H., & Miao, S. (2023). Recent Progress in Microencapsulation of Active Peptides—Wall Material, Preparation, and Application: A Review. In Foods (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/foods12040896

21. da Silva Acácio, R., Pamphile-Adrian, A. J., Florez-Rodriguez, P. P., de Freitas, J. D., Goulart, H. F., & Santana, A. E. G. (2023). Dataset of Schinus terebinthifolius essential oil microencapsulated by spray-drying. Data in Brief, 47. https://doi.org/10.1016/j.dib.2023.108927

22. Asha C, Usha R, Kumar SR, Rajesh T. Synthesis, characterization and antibiotic capabilities of microspheres loaded with essential oils. Indian J Nat Prod Resour. 2023;14(1).

23. Bouaouina S, Aouf A, Touati A, Ali H, Elkhadragy M, Yehia H, et al. Effect of Nanoencapsulation on the Antimicrobial and Antibiofilm Activities of Algerian Origanum glandulosum Desf. against Multidrug-Resistant Clinical Isolates. Nanomaterials. 2022;12(15).

24. Cao C, Xie P, Zhou Y, Guo J. Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22). Foods. 2023;12(10).

25. Phanse SK, Sawant S, Singh H, Chandra S. Physico-Chemical and Antimicrobial Efficacy of Encapsulated Dhavana Oil: Evaluation of Release and Stability Profile from Base Matrices. Molecules. 2022;27(22).

26. Sánchez-Osorno DM, López-Jaramillo MC, Caicedo Paz AV, Villa AL, Peresin MS, Martínez-Galán JP. Recent Advances in the Microencapsulation of Essential Oils, Lipids, and Compound Lipids through Spray Drying: A Review. Vol. 15, Pharmaceutics. 2023.

27. Berraaouan D, Essifi K, Addi M, Hano C, Fauconnier ML, Tahani A. Hybrid Microcapsules for Encapsulation and Controlled Release of Rosemary Essential Oil. Polymers (Basel). 2023;15(4).

28. Truong CBH, Nguyen TKH, Tran TTT, Nguyen TNL, Mai HC. Microencapsulation of corn mint (Mentha arvensis L.) essential oil using spray-drying technology. Food Res. 2022;6(4).

29. Kazlauskaite JA, Matulyte I, Marksa M, Bernatoniene J. Nutmeg Essential Oil, Red Clover, and Liquorice Extracts Microencapsulation Method Selection for the Release of Active Compounds from Gel Tablets of Different Bases. Pharmaceutics. 2023;15(3).

30. Chmiel M, Drzymała G, Bocianowski J, Komnenić A, Baran A, Synowiec A. Maltodextrin-Coated Peppermint and Caraway Essential Oils Effects on Soil Microbiota. Plants. 2022;11(23).

31. de Melo AM, Barbi RCT, Almeida FLC, de Souza WFC, Cavalcante AM de M, de Souza HJB, et al. Effect of Microencapsulation on Chemical Composition and Antimicrobial, Antioxidant and Cytotoxic Properties of Lemongrass (Cymbopogon flexuosus) Essential Oil. Food Technol Biotechnol. 2022;60(3).

32. Ahmad MR, Ahmad K. Antimicrobial properties of some plant essential oils against two human pathogens. International Journal of Pharmaceutical Chemistry and Analysis. 2023;9(4).

33. Montesinos L, Baró A, Gascón B, Montesinos E. Bactericidal and plant defense elicitation activities of Eucalyptus oil decrease the severity of infections by Xylella fastidiosa on almond plants. Front Plant Sci. 2023;14.

34. El Abdali Y, Beniaich G, Mahraz AM, El Moussaoui A, Bin Jardan YA, Akhazzane M, et al. Antibacterial, Antioxidant, and in silico NADPH Oxidase Inhibition Studies of Essential Oils of Lavandula dentata against Foodborne Pathogens. Evidence-based Complementary and Alternative Medicine. 2023;2023.

35. Gheorghita D, Robu A, Antoniac A, Antoniac I, Ditu LM, Raiciu AD, et al. In Vitro Antibacterial Activity of Some Plant Essential Oils against Four Different Microbial Strains. Applied Sciences (Switzerland). 2022;12(19).

36. Phanse SK, Sawant S, Singh H, Chandra S. Physico-Chemical and Antimicrobial Efficacy of Encapsulated Dhavana Oil: Evaluation of Release and Stability Profile from Base Matrices. Molecules. 2022;27(22).

Downloads

Published

2025-06-14

How to Cite

1.
Bustillos A, Proaño-Pérez E, Vilcacundo M, Guangasig Toapanta VH. Essential oils and microencapsulation: mechanisms and efficacy in the inhibition of biofilms and pathogens. Salud, Ciencia y Tecnología [Internet]. 2025 Jun. 14 [cited 2025 Jun. 23];5:1799. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1799