Phytochemical profiling, dengue antiviral properties, and cytotoxicity of novel Baper tea polyherbal infusion: Insights from in silico and in vitro studies
DOI:
https://doi.org/10.56294/saludcyt20251791Keywords:
Antiviral agents, NS5 protein, Baper tea, infectious disease, molecular docking simulation, cytotoxicityAbstract
Introduction: Dengue virus infection remains a significant global health challenge with limited therapeutic options, necessitating the development of natural antiviral agents.
Objective: This study aimed to evaluate the phytochemical composition, antiviral efficacy, and safety profile of the Baper Tea polyherbal infusion against DENV-3 using integrated computational and experimental methodologies.
Methods: Gas chromatography-mass spectrometry (GC-MS) was used to identify bioactive compounds, and Fourier transform infrared (FT-IR) spectroscopy was used to characterize functional groups. In vitro antiviral assays were used to determine the effective concentration (EC₅₀) and cytotoxic concentration (CC₅₀) values. Molecular docking simulations were used to evaluate the binding affinity between the identified compounds and DENV-3 NS5 protein, followed by drug-likeness assessment and toxicity prediction.
Results: GC-MS analysis revealed 40 bioactive compounds, predominantly tetraacetyl-d-xylonic nitriles (11.73%). FT-IR spectroscopy confirmed the characteristic hydroxyl, aliphatic C-H, C=C, and C-O functional groups of flavonoids, terpenoids, and glycosidic structures. In vitro assays demonstrated potent anti-DENV-3 activity (EC₅₀=19.02 μg/mL) with minimal cytotoxicity (CC₅₀=4,897.6 μg/mL), yielding an exceptional selectivity index (SI) of 257.5. The ten selected compounds exhibited drug-like properties with favorable toxicity profiles and organ safety parameters. Molecular docking revealed that W-18 exhibited the strongest binding affinity (-9.93 kcal/mol, Ki=52.35 nM) for the DENV-3 NS5 protein, forming complex interaction networks through conventional hydrogen bonds, Pi-donor hydrogen bonds, and pi-sulfur interactions, followed by phenanthrene and dihydroxanthin.
Conclusions: Baper Tea polyherbal infusion exhibits significant antiviral potential against DENV-3 through synergistic interactions of bioactive compounds targeting the NS5 protein methyltransferase domain, potentially disrupting viral RNA capping and replication mechanisms. These findings highlight the potential of Baper tea as a candidate for developing novel anti-dengue therapeutic agents.
References
1. Gasmi A, Shanaida M, Oleshchuk O, Semenova Y, Mujawdiya PK, Ivankiv Y, et al. Natural ingredients to improve immunity. Pharmaceuticals. 2023;16(4):528.
2. Adnyana IMDM, Utomo B, Eljatin DS, Sudaryati NLG. One Health approach and zoonotic diseases in Indonesia: Urgency of implementation and challenges. Narra J. 2023; 3(3): e257.
3. Mboi N, Syailendrawati R, Ostroff SM, Elyazar IR, Glenn SD, Rachmawati T, et al. The state of health in Indonesia’s provinces, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob Health. 2022;10(11):e1632–45.
4. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al‐Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):24655.
5. Salam MdA, Al-Amin MdY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare. 2023;11(13):1946.
6. Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, et al. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol. 2020;11:00351.
7. Hooda P, Malik R, Bhatia S, Al-Harrasi A, Najmi A, Zoghebi K, et al. Phytoimmunomodulators: A review of natural modulators for complex immune system. Heliyon. 2024;10(1):e23790.
8. Lim SYM, Chieng JY, Pan Y. Recent insights on anti-dengue virus (DENV) medicinal plants: review on in vitro , in vivo and in silico discoveries. All Life. 2021;14(1):1–33.
9. Pal D, Lal P. Plants showing anti-viral activity with emphasis on secondary metabolites and biological screening. In: Anti-viral metabolites from medicinal plants reference series in phytochemistry. 1. Aufl. Cham: Springer Nature Switzerland AG; 2024. S. 29–95.
10. Riaz M, Khalid R, Afzal M, Anjum F, Fatima H, Zia S, et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci Nutr. 2023;11(6):2500–29.
11. Adegbola PI, Semire B, Fadahunsi OS, Adegoke AE. Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. Virusdisease. 2021;32(1):85–97.
12. Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, et al. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals. 2021;14(4):381.
13. Lebdah M, Tantawy L, Elgamal AM, Abdelaziz AM, Yehia N, Alyamani AA, et al. The natural antiviral and immune stimulant effects of Allium cepa essential oil onion extract against virulent Newcastle disease virus. Saudi J Biol Sci. 2022;29(2):1239–45.
14. Mahant S, Patel K, Patel A, Dongre S, Parmar D, Shah R, et al. Pharmacological evaluation of combinational treatment of herbal medicines with 5-fluorouracil for therapeutic enhancement in an animal model of colorectal cancer. J Appl Pharm Sci. 2024:161574.
15. Thagriki DS. Quercetin and its derivatives are potent inhibitors of the dengue virus. Trends in Phytochemical Research. 2022;6(1):70–85.
16. Khikmatullaev IL, Boimatov OSh, Yuldasheva NK, Azizova DSh, Terent’eva EO, Rakhmanberdyeva RK, et al. Constituent composition of Physalis angulata. Chem Nat Compd. 2022;58(4):596–600.
17. Machado IF, Miranda RG, Dorta DJ, Rolo AP, Palmeira CM. Targeting oxidative stress with polyphenols to fight liver diseases. Antioxidants. 2023;12(6):1212.
18. Okmanov RYa, Makhmudova MM, Bobaev ID, Tashkhodjaev B. Withanolides from Physalis angulata L. Acta Crystallogr E Crystallogr Commun. 2021;77(8):804–8.
19. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, et al. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants. 2020;9(12):1309.
20. Adnyana IMDM, Sudaryati NLG. Phytochemical analysis of the antioxidant compounds of Baper Tea and its potential as an immunomodulatory agent and candidate for standardized herbal medicine. Trends Sci. 2023;20(1):6391.
21. Lee NYS, Khoo WKS, Adnan MA, Mahalingam TP, Fernandez AR, Jeevaratnam K. The pharmacological potential of Phyllanthus niruri. J Pharm Pharmacol. 2016;68(8):953–69.
22. Sudaryati NLG, Adnyana IMDM, Wahyudi IW, Dewi IAU, Agustini DGD, Putra IGSW. Polyherbal teh baper untuk obat tradisional (bioaktivitas, potensi dan prospeknya). 1. Aufl. Utomo B. Bandung: CV. Media Sains Indonesia; 2024. 168 S.
23. Nur A, Ansori M, Fadholly A, Proboningrat A, Hayaza S. Efficacy of Allium cepa (Amaryllidaceae) extract against dengue virus type-2 (flaviviridae: flavivirus) isolated from Surabaya, Indonesia. 2020;20:4783–6.
24. Wu J, Zhao J, Zhang T, Gu Y, Khan IA, Zou Z, et al. Naturally occurring physalins from the genus Physalis: A review. Phytochemistry. 2021;191:112925.
25. Novitasari A, Rohmawaty E, Rosdianto AM. Physalis angulata Linn. as a medicinal plant (Review). Biomed Rep. 2024;20(3):47.
26. Taddeo VA, Núñez MJ, Beltrán M, Castillo UG, Menjívar J, Jiménez IA, et al. Withanolide-type steroids from Physalis nicandroides inhibit HIV transcription. J Nat Prod. 2021;84(10):2717–26.
27. Adnyana IMDM, Utomo B, Fauziyah S, Eljatin DS, Setyawan MF, Sumah LHM, et al. Activity and potential of Phyllantus niruri L. and Phyllantus urinaria L. as Hepatitis B virus inhibitors: A narrative review of the SANRA protocol. J Res Pharm. 2024;28(1):335–50.
28. Huang D, Yang B, Yao Y, Liao M, Zhang Y, Zeng Y, et al. Autophagic inhibition of caveolin-1 by compound Phyllanthus urinaria L. activates ubiquitination and proteasome degradation of β-catenin to suppress metastasis of hepatitis b-associated hepatocellular carcinoma. Front Pharmacol. 2021;12(June):1–20.
29. Wu Y, Lu Y, Li S yu, Song Y han, Hao Y, Wang Q. Extract from Phyllanthus urinaria L. inhibits hepatitis B virus replication and expression in hepatitis B virus transfection model in vitro. Chin J Integr Med. 2015;21(12):938–43.
30. Adnyana IMDM, Utomo BY. Dengue elimination challenges in Bali: A one health perspective. Nat J Comm Med. 2023; 14(08):544-6.
31. Anh DD, Sani LM, Riyanti R, Istinaroh N, My TN, Van Tong H, et al. Diagnostic challenges of arboviral infections and dengue virus serotype distribution in febrile patients in East Java, Indonesia. IJID Regions. 2025;14:100512.
32. Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Res Notes. 2019;12(1):350.
33. Tatura SNN, Denis D, Santoso MS, Hayati RF, Kepel BJ, Yohan B, et al. Outbreak of severe dengue associated with DENV-3 in the city of Manado, North Sulawesi, Indonesia. Int J Infect Dis. 2021;106:185–96.
34. Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, et al. Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLoS Negl Trop Dis. 2019;13(10):e0007785.
35. Darwin M, Mamondol MR, Sormin SA, Nurhayati Y, Tambunan H, Sylvia D, et al. Quantitative approach research method. 1. Aufl. Tambunan TS. Bandung: CV Media Sains Indonesia; 2021. 192 S.
36. Alagarasu K, Patil P, Kaushik M, Chowdhury D, Joshi RK, Hegde H V., et al. In Vitro Antiviral activity of potential medicinal plant extracts against dengue and chikungunya viruses. Front Cell Infect Microbiol. 2022;12:866452.
37. Kautsar R, Rachmawati Y, Rokhim S, Sucipto TH, Damayanti M, Ramadhani AH. In Silico analysis of inhibitor potential of punicalagin compound in pomegranate (Punica granatum) against NS5 DENV-3 protein. Indones J Trop Infect Dis. 2024;12(1):24–34.
38. Sadgrove N, Padilla-González G, Phumthum M. Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication. Plants. 2022;11(6):789.
39. Abdullah ZL, Chee HY, Yusof R, Mohd Fauzi F. Finding lead compounds for dengue antivirals from a collection of old drugs through in silico target prediction and subsequent in vitro validation. ACS Omega. 2023;8(36):32483–97.
40. Saqallah FG, Abbas MA, Wahab HA. Recent advances in natural products as potential inhibitors of dengue virus with a special emphasis on NS2b/NS3 protease. Phytochem. 2022;202:113362.
41. Idrees S, Chen H, Panth N, Paudel KR, Hansbro PM. Exploring viral–host protein interactions as antiviral therapies: A computational perspective. microorganisms. 2024;12(3):630.
42. Mahaboob Ali AA, Vishal A, Nelson EJR. Targeting host-virus interactions: in silico analysis of the binding of human milk oligosaccharides to viral proteins involved in respiratory infections. Sci Rep. 2024;14(1):4111.
43. Juliasih NKA, Adnyana IMDM. Utilization of Pteridophyta species in Cyathea Park, Bali, as traditional medicine agents: A field study and meta-synthesis review. Not Sci Biol. 2023;15(2):11522.
44. Wang S, Li Z, Aispuro D, Guevara N, Van Valkenburgh J, Chen B, et al. Hydroxyl-rich hydrophilic endocytosis-promoting peptide with no positive charge. J Am Chem Soc. 2022;144(44):20288–97.
45. Aladejana EB. Biological properties of polyherbal formulations: A review of their antimicrobial, anti-inflammatory, antioxidant, and toxicological activities. Pharmacog J. 2023;15(5):933–63.
46. Anwar S, Kausar MohdA, Parveen K, Zahra A, Ali A, Badraoui R, et al. Polyherbal formulation: The studies towards identification of composition and their biological activities. J King Saud Univ Sci. 2022;34(7):102256.
47. Halim JAN, Halim SN, Denis D, Haryanto S, Dharmana E, Hapsari R, et al. Antiviral activities of curcumin and 6‐gingerol against infection of four dengue virus serotypes in A549 human cell line in vitro. Indones J Biotechnol. 2021;26(1):41.
48. Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep. 2021;11(1):21221.
49. Rosmalena R, Elya B, Dewi BE, Fithriyah F, Desti H, Angelina M, et al. The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens. 2019;8(2):85.
50. Rehman B, Ahmed A, Khan S, Saleem N, Naseer F, Ahmad S. Exploring plant-based dengue therapeutics: from laboratory to clinic. Trop Dis Travel Med Vaccines. 2024;10(1):23.
51. Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem. 2024;31(16):2195–233.
52. Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: Application in herbal drug research. In: profiles of drug substances, excipients and related methodology. 1. Aufl. Netherlands: Elsevier B.V.; 2021. S. 273–307.
53. Roney M, Mohd Aluwi MFF. The importance of in-silico studies in drug discovery. Intelligent Pharmacy. 2024;2(4):578–9.
54. Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther. 2024;9(1):316.
55. Zhang X, Yu H, Sun P, Huang M, Li B. Antiviral effects and mechanisms of active ingredients in tea. Molecules. 2024;29(21):5218.
56. Mugale MN, Dev K, More BS, Mishra VS, Washimkar KR, Singh K, et al. A comprehensive review on preclinical safety and toxicity of medicinal plants. Clin Complemen Med Pharmacol. 2024;4(1):100129.
57. Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, et al. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol. 2020;11:422.
58. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198.
59. Boudou F, Belakredar A, Berkane A, Keziz A, Alsaeedi H, Cornu D, et al. Phytochemical profiling and in silico evaluation of Artemisia absinthium compounds targeting Leishmania N-myristoyltransferase: molecular docking, drug-likeness, and toxicity analyses. Front Chem. 2024;12:1508603.
60. Didigwu OK, Nnadi CO. Theoretical drug-likeness, pharmacokinetic and toxicities of phytotoxic terpenoids from the toxic plants-phytotoxins. Trop J Nat Prod Res. 2024;8(10):8867–73.
61. Durán-Iturbide NA, Díaz-Eufracio BI, Medina-Franco JL. In silico ADME/Tox profiling of natural products: A focus on biofacquim. ACS Omega. 2020;5(26):16076–84.
62. Jităreanu A, Trifan A, Vieriu M, Caba IC, Mârțu I, Agoroaei L. Current trends in toxicity assessment of herbal medicines: A narrative review. Processes. 2022;11(1):83.
63. Chatrin C, Talapatra SK, Canard B, Kozielski F. The structure of the binary methyltransferase-SAH complex from Zika virus reveals a novel conformation for the mechanism of mRNA capping. Oncotarget. 2018;9(3):3160–71.
64. Wnuk M, Slipek P, Dziedzic M, Lewinska A. The roles of host 5-methylcytosine RNA methyltransferases during viral infections. Int J Mol Sci. 2020;21(21):8176.
65. Chtita S, Ghamali M, Ousaa A, Aouidate A, Belhassan A, Taourati AI, et al. QSAR study of anti-human African trypanosomiasis activity for 2-phenylimidazopyridines derivatives using DFT and lipinski’s descriptors. Heliyon. 2019;5(3):e01304.
66. Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother. 2024;176:116811.
67. Casanova LM, Costa SS. Synergistic interactions in natural products: therapeutic potential and challenges. Rev Virtual Quim. 2017;575–95.
68. Rani AC, Sujitha S, Kalaimathi K, Vijayakumar S, Varatharaju G, Karthikeyan K, et al. Uncovering of anti-dengue molecules from plants prescribed for dengue: a computational investigation. Chem Africa. 2022;5(5):1321–36.
69. Altamish M, Khan M, Baig MS, Pathak B, Rani V, Akhtar J, et al. Therapeutic potential of medicinal plants against dengue infection: A mechanistic viewpoint. ACS Omega. 2022;7(28):24048–65.
70. Faisal S, Badshah SL, Kubra B, Emwas AH, Jaremko M. Alkaloids as potential antivirals. A comprehensive review. Nat Prod Bioprospect. 2023;13(1):4.
71. Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother. 2021;140:111596.
72. Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatsh Chem. 2023;154(7):683–707.
73. Koraboina CP, Akshinthala P, Katari NK, Adarasandi R, Jonnalagadda SB, Gundla R. New oxindole carboxamides as inhibitors of DENV NS5 RdRp: Design, synthesis, docking and Biochemical characterization. Heliyon. 2023;9(11):e21510.
74. Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a tool in therapeutics: role of amino acids/peptides-bioactive (including heterocycles) hybrid molecules in treating infectious diseases. Antibiotics. 2023;12(3):532.
75. Winiewska-Szajewska M, Paprocki D, Marzec E, Poznański J. Effect of histidine protonation state on ligand binding at the ATP-binding site of human protein kinase CK2. Sci Rep. 2024;14(1):1463.
76. Kumah RT, Omondi RO, Smith GS, Ojwach SO. Molecular structures, DFT calculations, in silico molecular docking, predicted pharmacokinetics and biological activities of N-(quinolin-8-yl)-2- pyridine/pyrazine carboxamide compounds. J Mol Struct. 2025;1319:139425.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ni Luh Gede Sudaryati, Budi Utomo, I Made Dwi Mertha Adnyana, Shifa Fauziyah, Teguh Hari Sucipto, Putu Lakustini Cahyaningrum, I Gst AA Gangga Samala Dewi, Radinal Kautsar, Desak Gede Dwi Agustini (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.