Advanced Mechanical Gear Design Optimization through Multivariate Statistical Modeling: Strength Analysis and Wear Mitigation Strategies

Authors

DOI:

https://doi.org/10.56294/saludcyt20251752

Keywords:

wear, modeling, multivariate, optimization, strength

Abstract

Introduction: Mechanical gears are essential components in power transmission in industrial, automotive and aerospace systems. Objective: Advanced optimization of mechanical gear design is explored using multivariate statistical modeling, with a focus on structural strength and wear mitigation. Methodology: The NSGA-II algorithm was applied to identify optimal solutions on the Pareto front, balancing wear minimization and mechanical strength maximization. Results: The results indicate that a modulus close to 5.0 and a pressure angle of 24°-25° optimize durability and gear efficiency. In addition, linear regression showed a high predictive ability (R²=0.882 for wear and R²=0.963 for strength), although limited to a single-objective approach. Conclusion: It is concluded that the combination of NSGA-II with statistical models and numerical simulation can improve the accuracy and applicability of solutions in industrial environments.

 

References

1. Fang, X., Wen, J., Cheng, L., Yu, D., Zhang, H., & Gumbsch, P. (2022). Programmable gear-based mechanical metamaterials. Nature Materials, 21(8), 869-876. http://dx.doi.org/10.1038/s41563-022-01269-3

2. Marafona, J. D., Marques, P. M., Martins, R. C., & Seabra, J. H. (2021). Mesh stiffness models for cylindrical gears: A detailed review. Mechanism and Machine Theory, 166, 104472. https://doi.org/10.1016/j.mechmachtheory.2021.104472

3. Rajwar, K., Deep, K., & Das, S. (2023). An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artificial Intelligence Review, 56(11), 13187-13257. http://dx.doi.org/10.1007/s10462-023-10470-y

4. Chen, X., Hong, J., Wang, Y., & Ma, Y. (2021). Fatigue failure analysis of the central-driven bevel gear in a turboshaft engine arising from multi-source excitation. Engineering Failure Analysis, 119, 104811. https://doi.org/10.1016/j.engfailanal.2020.104811

5. Blekos, K., Brand, D., Ceschini, A., Chou, C. H., Li, R. H., Pandya, K., & Summer, A. (2024). A review on quantum approximate optimization algorithm and its variants. Physics Reports, 1068, 1-66. https://doi.org/10.1016/j.physrep.2024.03.002

6. Shi, Z. Y., Yu, B., Song, H. X., & Wang, X. Y. (2022). Development of gear measurement technology during last 20 years. China Mechanical Engineering, 33(9), 1009-1024. https://www.researchgate.net/journal/The-International-Journal-of-Advanced-Manufacturing-Technology-1433-3015

7. Li, M., Tang, L. (2025). Parametric Modeling and Multi-Objective Optimization of Spiral Bevel Gears Based on NSGA-II Algorithm. Journal of Xihua University (Natural Science Edition). http://dx.doi.org/10.12198/j.issn.1673-159X.5543

8. Alhijawi, B., & Awajan, A. (2024). Genetic algorithms: Theory, genetic operators, solutions, and applications. Evolutionary Intelligence, 17(3), 1245-1256. http://dx.doi.org/10.1007/s12065-023-00822-6

9. Abderazek, H., Hamza, F., Yildiz, A. R., & Sait, S. M. (2021). Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design. Materials Testing, 63(3), 266-271. http://dx.doi.org/10.1515/mt-2020-0039

10. Xiang, L., An, C., Zhang, Y., & Hu, A. (2021). Failure dynamic modelling and analysis of planetary gearbox considering gear tooth spalling. Engineering Failure Analysis, 125, 105444. https://doi.org/10.1016/j.engfailanal.2021.105444

11. Maraş, S., Arslan, H., & Birgören, B. (2021). Detection of gear wear and faults in spur gear systems using statistical parameters and univariate statistical process control charts. Arabian Journal for Science and Engineering, 46, 12221-12234. http://dx.doi.org/10.1007/s13369-021-05930-y

12. Pamukçu, H., Yapıcıoğlu, P. S., & Yeşilnacar, M. İ. (2023). Investigating the mitigation of greenhouse gas emissions from municipal solid waste management using ant colony algorithm, Monte Carlo simulation and LCA approach in terms of EU Green Deal. Waste Management Bulletin, 1(2), 6-14. https://doi.org/10.1016/j.wmb.2023.05.001

13. Rana, V., Petare, A., Kumar Jain, N., & Parey, A. (2022). Using abrasive flow finishing process to reduce noise and vibrations of cylindrical and conical gears. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(10), 1341-1354. http://dx.doi.org/10.1177/09544054221075875

14. Younes, E. B., Changenet, C., Bruyère, J., Rigaud, E., & Perret-Liaudet, J. (2022). Multi-objective optimization of gear unit design to improve efficiency and transmission error. Mechanism and Machine Theory, 167, 104499. https://doi.org/10.1016/j.mechmachtheory.2021.104499

15. Yuan, M., Li, Y., Zhang, L., & Pei, F. (2021). Research on intelligent workshop resource scheduling method based on improved NSGA-II algorithm. Robotics and Computer-Integrated Manufacturing, 71, 102141. https://doi.org/10.1016/j.rcim.2021.102141

16. El Mansouri, M. H., Talbi, M., Tahiri, Z., Nhila, O., El Kafhali, M., & Sekkat, H. (2023). Application of the pareto tool for the analysis of CT scanner failures. Journal of Failure Analysis and Prevention, 23(5), 2039-2043. http://dx.doi.org/10.1007/s11668-023-01748-y

17. Ma, H., Zhang, Y., Sun, S., Liu, T., & Shan, Y. (2023). A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artificial Intelligence Review, 56(12), 15217-15270. http://dx.doi.org/10.1109/ACCESS.2021.3070634

18. Duan, P., Yu, Z., Gao, K., Meng, L., Han, Y., & Ye, F. (2024). Solving the multi-objective path planning problem for mobile robot using an improved NSGA-II algorithm. Swarm and Evolutionary Computation, 87, 101576. https://doi.org/10.1016/j.swevo.2024.101576

19. He, F., & Ye, Q. (2022). A bearing fault diagnosis method based on wavelet packet transform and convolutional neural network optimized by simulated annealing algorithm. Sensors, 22(4), 1410. http://dx.doi.org/10.3390/s22041410

20. Zhao, D., Chen, M., Lv, J., Lei, Z., & Song, W. (2023). Multi-objective optimization of battery thermal management system combining response surface analysis and NSGA-II algorithm. Energy Conversion and Management, 292, 117374. https://doi.org/10.1016/j.enconman.2023.117374

21. Flek, J., Dub, M., Kolář, J., Lopot, F., & Petr, K. (2021). Determination of mesh stiffness of gear—Analytical approach vs. FEM analysis. applied sciences, 11(11), 4960. https://doi.org/10.3390/app11114960

22. Qiu, M., Zhang, J., Wang, H., Yang, C., Tang, Y., & Zhang, P. (2024). Multi-objective optimization design of wheel hub bearings based on Kriging-NSGA-II. Journal of Mechanical Science and Technology, 38(3), 1341-1353. http://dx.doi.org/10.1007/s12206-024-0129-6

23. Shi, X., Li, Y., Zhang, S., & Zhang, Z. (2025). PB-MNSGA-II algorithm and its application for multi-objective optimization design of under-vehicle equipment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 239(3), 659-673. http://dx.doi.org/10.1177/09544062241288925

24. Zhang, K., Shen, R., Hu, Z., Tang, J., Sun, Z., Ning, A., & Yang, S. (2024). Dynamic modeling and analysis considering friction-wear coupling of gear system. International Journal of Mechanical Sciences, 275, 109343. https://doi.org/10.1016/j.ijmecsci.2024.109343

25. Osuch-Słomka, E., Michalczewski, R., Mańkowska-Snopczyńska, A., Kalbarczyk, M., Wieczorek, A. N., & Skołek, E. (2024). Wear mechanisms of the working surface of gears after scuffing tests. Materials, 17(14), 3552. http://dx.doi.org/10.3390/ma17143552

26. Sugunesh, A. P., Vignesh, S., Mertens, A. J., & Raj, R. N. (2024). Polymer gear failure prediction: A regression-Based approach using FEA and photoelasticity technique. Engineering Failure Analysis, 165, 108808. https://doi.org/10.1016/j.engfailanal.2024.108808

27. Pătrăușanu, A., Florea, A., Neghină, M., Dicoiu, A., & Chiș, R. (2024). A systematic review of multi-objective evolutionary algorithms optimization frameworks. Processes, 12(5), 869. http://dx.doi.org/10.3390/pr12050869

28. Jia, H., Liang, S., Zhao, J., Li, J., Dai, H., & Ji, S. (2024). Improving accuracy and efficiency of the machined PEEK denture based on NSGA-II integrated GABP neural network. Dental Materials, 40(11), e82-e94. https://doi.org/10.1016/j.dental.2024.07.011

29. Ni, G., Liu, Z., Song, C., Liu, S., Dong, Y., & Cao, Y. (2024). Geometric parameter design and contact characteristics of beveloid gear and involute cylindrical gear transmission with crossed axes. Journal of Mechanical Science and Technology, 38(2), 815-825. https://doi.org/10.1007/s12206-024-0128-7

30. Al-Haddad, L. A., & Mahdi, N. M. (2024). Efficient multidisciplinary modeling of aircraft undercarriage landing gear using data-driven Naïve Bayes and finite element analysis. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(4), 3187-3199. http://dx.doi.org/10.1007/s41939-024-00389-4

31. Gu, Y., Ma, Z., Guo, Q., & Wang, Y. (2024). Performance analysis and optimization of a vehicular LT-PEMFC for maximum power density and efficiency based on NSGA-II algorithm. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 09544070241286251. http://dx.doi.org/10.1177/09544070241286251

32. Manarikkal, I., Elasha, F., & Mba, D. (2021). Diagnostics and prognostics of planetary gearbox using CWT, auto regression (AR) and K-means algorithm. Applied Acoustics, 184, 108314. https://doi.org/10.1016/j.apacoust.2021.108314.

Downloads

Published

2025-06-01

How to Cite

1.
Moreno Pallares RR, Quinchuela Paucar JC, Moyota Amaguaya PP, Buenaño Moyano LF. Advanced Mechanical Gear Design Optimization through Multivariate Statistical Modeling: Strength Analysis and Wear Mitigation Strategies. Salud, Ciencia y Tecnología [Internet]. 2025 Jun. 1 [cited 2025 Jun. 21];5:1752. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1752