Workload, Fatigue, and Cognitive Performance in University Hospital Nurses: A Cross-Sectional Study

Authors

DOI:

https://doi.org/10.56294/saludcyt20251731

Keywords:

Occupational Fatigue, Health Personnel, Workload, Mental Fatigue

Abstract

Introduction: As the largest workforce in the healthcare industry, nurses are essential to maintaining patient safety.  Personal and environmental factors, including high demands, irregular work hours, and large workloads, make nurses vulnerable to fatigue.
Methods: The study involved 60 participants using several tools for data collection, including the NASA Task Load Index (NASA-TLX) to assess workload, the Swedish Occupational Fatigue Inventory (SOFI) to measured fatigue, heart rate variability (HRV) measurements to evaluated autonomic nervous system activity, electroencephalogram (EEG) analyzed for cognitive functions, and the Psychomotor Vigilance Test (PVT) to assessed cognitive performance.
Results: The findings revealed that the nurses experienced high subjective workloads, particularly related to mental, physical, and temporal demands. Fatigue, especially in terms of energy depletion and sleepiness, was significantly reported. HRV data indicated a shift toward parasympathetic dominance after each shift, while EEG results showed decreased theta and alpha wave activity, suggesting increased fatigue. The PVT results showed slower reaction times and more lapses in performance, especially after night shifts, indicating cognitive impairment due to fatigue.
Conclusions: These results highlight the considerable impact of high workloads, shift work, and fatigue on the health and performance of nurses. The study suggests that healthcare institutions should implement strategies to reduce workload, manage fatigue, and improve recovery to maintain optimal cognitive performance and overall well-being of nursing staff. These findings can inform policies aimed at improving working conditions and ensuring better care delivery in hospital settings.

References

1. He Q, Ren J, Wang G, Wang Y. A national cross-sectional study on latent profile analysis of occupational fatigue among Chinese nurses in the early post-COVID-19 era. Front Public Health. 2024;12. doi: 10.3389/fpubh.2024.1501417. Available from: https://www.frontiersin.org/journals/ public-health/articles/ 10.3389/fpubh.2024.1501417/full

2. Techera U, Hallowell M, Stambaugh N, Littlejohn R. Causes and consequences of occupational fatigue: Meta-Analysis and systems model. J Occup Environ Med. 2016;58(10). doi: 10.1097/JOM.0000000000000837. Available from: https://pubmed.ncbi.nlm.nih.gov/27525527/

3. Ullman AJ, Davidson PM. Patient safety: the value of the nurse. Vol. 397, The Lancet. 2021. doi: 10.1016/S0140-6736(21)00981-8. Available from: https://www.thelancet.com/ journals/lancet/article/ PIIS0140-6736(21)00981-8/fulltext

4. Cho H, Steege LM. Nurse Fatigue and Nurse, Patient Safety, and Organizational Outcomes: A Systematic Review. Vol. 43, Western Journal of Nursing Research. 2021. doi: 10.1177/0193945921990892. Available from: https://pubmed.ncbi.nlm.nih.gov/33554767/

5. Thompson BJ. Fatigue and the Female Nurse: A Narrative Review of the Current State of Research and Future Directions. Vol. 2, Women’s Health Reports. 2021. doi: 10.1089/whr.2020.0107. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8006794/

6. Steege LM, Pinekenstein BJ, Arsenault Knudsen É, Rainbow JG. Exploring nurse leader fatigue: a mixed methods study. J Nurs Manag. 2017;25(4). doi: 10.1111/jonm.12464. Available form: https://pubmed.ncbi.nlm.nih.gov/28244184/

7. Nur I, Iskandar H, Ade RF. The measurement of nurses’ mental workload using NASA-TLX method (a case study). Malaysian Journal of Public Health Medicine. 2020;20 (Specialissue1). doi.org/10.37268/mjphm/vol.20/no.Special1/art.705. Available from: https://mjphm.org/ index.php/ mjphm/article/view/705

8. Lee S, Seong S, Park S, Lim J, Hong S, Cho Y, Kim H. Korean version of the swedish occupational fatigue inventory among construction workers: Cultural adaptation and psychometric evaluation. Int J Environ Res Public Health. 2021;18(8). doi: 10.3390/ijerph18084302. Available from: https://pubmed. ncbi.nlm.nih.gov/33919602/

9. Schaffarczyk M, Rogers B, Reer R, Gronwald T. Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors. 2022;22(17). doi: 10.3390/s22176536. Available from: https://pubmed.ncbi.nlm.nih.gov/36081005/

10. Lipponen JA, Tarvainen MP. Accuracy of Kubios HRV software respiratory rate estimation algorithms [Internet]. Sensors 2022, 22(19), 7156. doi.org/10.3390/s22197156. Available from: https://www.mdpi.com/ 1424-8220/22/19/7156

11. Khitrov MY, Laxminarayan S, Thorsley D, Ramakrishnan S, Rajaraman S, Wesensten NJ, Reifman J. PC-PVT: A platform for psychomotor vigilance task testing, analysis, and prediction. Behav Res Methods. 2014;46(1). doi: 10.3758/s13428-013-0339-9. Available from: https://pubmed.ncbi.nlm.nih.gov/23709163/

12. Tubbs-Cooley HL, Mara CA, Carle AC, Gurses AP. The NASA Task Load Index as a measure of overall workload among neonatal, paediatric and adult intensive care nurses. Intensive Crit Care Nurs. 2018;46. doi: 10.1016/j.iccn.2018.01.004. Available from: https://pubmed.ncbi.nlm.nih.gov/29449130/

13. Yuan Z, Wang J, Feng F, Jin M, Xie W, He H, Teng M. The levels and related factors of mental workload among nurses: A systematic review and meta-analysis. Vol. 29, International Journal of Nursing Practice. 2023. doi: 10.1111/ijn.13148. Available from: https://pubmed.ncbi.nlm.nih.gov/36950781/

14. Dhaini SR, Abed Al Ahad M, Simon M, Ausserhofer D, Abu-Saad Huijer H, Elbejjani M. Repeated assessments and predictors of nurses’ shift-specific perceived workload. Nurs Forum (Auckl). 2022;57(6). doi: 10.1111/nuf.12776. Available from: https://pubmed.ncbi.nlm.nih.gov/35790004/

15. Ahmadi M, Choobineh A, Mousavizadeh A, Daneshmandi H. Physical and psychological workloads and their association with occupational fatigue among hospital service personnel. BMC Health Serv Res. 2022;22(1). doi.org/10.1186/s12913-022-08530-0. Available from: https://bmchealthservres.biomedcentral.com/ articles/ 10.1186/s12913-022-08530-0

16. Santos J, Carvalhais C, Ramos C, Coelho T, Monteiro PRR, Vaz MAP. Portuguese version of the Swedish Occupational Fatigue Inventory (SOFI) among assembly workers: Cultural adaptation, reliability and validity. Int J Occup Med Environ Health. 2017;30(3). doi: 10.13075/ijomeh.1896.00760. Available from: https://pubmed.ncbi.nlm.nih.gov/28481374/

17. Reifman J, Kumar K, Khitrov MY, Liu J, Ramakrishnan S. PC-PVT 2.0: An updated platform for psychomotor vigilance task testing, analysis, prediction, and visualization. J Neurosci Methods. 2018;304. doi: 10.1016/j.jneumeth.2018.04.007. Available from: https://pubmed.ncbi.nlm.nih.gov/29679703/

18. Suparman A, Wibowo S, Kekalih A, Ilyas M, Agustina A. Indonesian Version of Swedish Occupational Fatigue Inventory (SOFI): Validity and Reliability Test of Worker’s Fatigue Assessment Instrument. The Indonesian Journal of Community and Occupational Medicine. 2022;2(2). doi: 10.53773/ijcom.v2i2.36.89-95Available from: https://ijcom.org/index.php/ijcom/article/view/36

19. Lees T, Khushaba R, Lal S. Electroencephalogram associations to cognitive performance in clinically active nurses. Physiol Meas. 2016;37(7). doi: 10.1088/0967-3334/37/7/968. Available from: https://pubmed.ncbi. nlm.nih.gov/27244262/

20. Gorlova S, Ichiba T, Nishimaru H, Takamura Y, Matsumoto J, Hori E, Nagashima Y, Tatsuse T, Ono T, Nishijo H. Non-restorative sleep caused by autonomic and electroencephalography parameter dysfunction leads to subjective fatigue at wake time in shift workers. Front Neurol. 2019;10(FEB). doi: 10.3389/fneur.2019.00066. Available from: https://pubmed.ncbi.nlm.nih.gov/30804882/

21. Yook S, Choi SJ, Zang C, Joo EY, Kim H. Are there effects of light exposure on daytime sleep for rotating shift nurses after night shift?: an EEG power analysis. Front Neurosci. 2024;18. doi: 10.3389/fnins.2024.1306070. Available from: https://pubmed.ncbi.nlm.nih.gov/38601092/

22. Allik A, Pilt K, Viigimäe M, Fridolin I. Pilot Study for Estimating Physical Fatigue Based on Heart Rate Variability and Reaction Time. In: IFMBE Proceedings. 2020. Available from: https://link.springer.com/chapter/10.1007/978-3-030-31635-8_23

23. Zhan T, Wei X, Zhang Z, Shi Z, Xie H, Ma X, Pan S, Zha D. The impact of working night shifts on cardiac autonomic nervous regulation during the six-minute walk test in nurses. BMC Nurs. 2024 Dec 1;23(1). doi: 10.1186/s12912-024-02563-y. Available from: https://bmcnurs.biomedcentral.com/articles/10.1186/s12912-024-02563-y

24. Li X, Zhu W, Sui X, Zhang A, Chi L, Lv L. Assessing Workplace Stress Among Nurses Using Heart Rate Variability Analysis With Wearable ECG Device–A Pilot Study. Front Public Health. 2022;9. doi: 10.3389/fpubh.2021.810577. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8863599/

25. Di Muzio M, Diella G, Di Simone E, Novelli L, Alfonsi V, Scarpelli S, Annarumma L, Salfi F, Pazzaglia M, Giannini AM, De Gennaro L. Nurses and Night Shifts: Poor Sleep Quality Exacerbates Psychomotor Performance. Front Neurosci. 2020;14. doi: 10.3389/fnins.2020.579938. Available from: https://pubmed.ncbi.nlm.nih.gov/33154716/

26. Wilson M, Permito R, English A, Albritton S, Coogle C, Van Dongen HPA. Performance and sleepiness in nurses working 12-h day shifts or night shifts in a community hospital. Accid Anal Prev. 2019;126. doi: 10.1016/j.aap.2017.09.023. Available from: https://pubmed.ncbi.nlm.nih.gov/28987265/

Downloads

Published

2025-06-03

How to Cite

1.
Rahmadani M, Kurniawidjaja LM, Puspasari MA, Istanti ND, Fitriani DY, Istiqomah MM, et al. Workload, Fatigue, and Cognitive Performance in University Hospital Nurses: A Cross-Sectional Study. Salud, Ciencia y Tecnología [Internet]. 2025 Jun. 3 [cited 2025 Jul. 20];5:1731. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1731