Development of a risk model for bcr-free prognosis in prostate cancer patients linked to nucleotide metabolism
DOI:
https://doi.org/10.56294/saludcyt20251644Keywords:
Prostate cancer, Risk model, nucleotide metabolism, prognostic genes, Risk prediction, GenesAbstract
Introduction: Prostate cancer is a prevalent malignancy among elderly men, with bioinformatics playing a crucial role in advancing diagnosis and treatment paradigms. Recent studies have highlighted the significance of nucleotide metabolism (NM) in Prostate cancer development and progression, linking it to aggressive cancer phenotypes characterized by uncontrolled proliferation and metastasis. Understanding NM-related genes (NMRGs) could provide insights into Prostate cancer pathogenesis and therapeutic targets.Methods: This paper analyzed TCGA-PRAD and GSE70769 datasets to identify critical modules associated with NMRGs using weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) between Prostate cancer and control samples were extracted from the TCGA-PRAD dataset, with overlaps identified as NM-related DEGs (DE-NMRGs). A biochemical recurrence (BCR)-free risk model was constructed from 396 Prostate cancer samples, and patients were classified into high- and low-risk groups based on median risk scores. A nomogram model integrating key prognostic factors was developed to predict BCR rates.Results: This paper identified 5 prognostic genes: RGS11, KAT2A, MXD3, TARBP1, and WFIKKN. The low-risk group exhibited significantly higher BCR-free survival rates, ESTIMATE scores, and immunophenoscore (IPS) scores compared to the high-risk group. Additionally, potential therapeutic agents, including KU-55933 and Wee1 inhibitors, were proposed. Conclusions: The identified prognostic genes present promising targets for Prostate cancer diagnosis and treatment, emphasizing their importance in predicting biochemical recurrence and tailoring personalized therapeutic strategies for patients.
References
[1] Schafer EJ, Jemal A, Wiese D, Sung H, Kratzer TB, Islami F, Dahut WL, Knudsen KE. Disparities and Trends in Genitourinary Cancer Incidence and Mortality in the USA. Eur Urol. 2023 Jul;84(1):117-126. doi: 10.1016/j.eururo.2022.11.023.
[2] Bass EJ, Pantovic A, Connor MJ, Loeb S, Rastinehad AR, Winkler M, Gabe R, Ahmed HU. Diagnostic accuracy of magnetic resonance imaging targeted biopsy techniques compared to transrectal ultrasound guided biopsy of the prostate: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022 Feb;25(2):174-179. doi: 10.1038/s41391-021-00449-7
[3] Rauluseviciute I, Drabløs F, Rye MB. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Med Genomics. 2020 Jan 8;13(1):6. doi: 10.1186/s12920-020-0657-6.
[4] Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T. Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Front Genet. 2020 Oct 23;11:544162. doi: 10.3389/fgene.2020.544162.
[5] Guo Y, Ziesch A, Hocke S, Kampmann E, Ochs S, De Toni EN, Göke B, Gallmeier E. Overexpression of heat shock protein 27 (HSP27) increases gemcitabine sensitivity in pancreatic cancer cells through S-phase arrest and apoptosis. J Cell Mol Med. 2015 Feb;19(2):340-50. doi: 10.1111/jcmm.12444.
[6] Hamzeh O, Alkhateeb A, Zheng J, Kandalam S, Rueda L. Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data. BMC Bioinformatics. 2020 Mar 11;21(Suppl 2):78. doi: 10.1186/s12859-020-3345-9.
[7] Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA. Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules. 2020 Oct 20;25(20):4831. doi: 10.3390/molecules25204831.
[8] Peng X, Chen Z, Farshidfar F, Xu X, Lorenzi PL, Wang Y, Cheng F, Tan L, Mojumdar K, Du D, Ge Z, Li J, Thomas GV, Birsoy K, Liu L, Zhang H, Zhao Z, Marchand C, Weinstein JN; Cancer Genome Atlas Research Network; Bathe OF, Liang H. Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep. 2018 Apr 3;23(1):255-269.e4. doi: 10.1016/j.celrep.2018.03.077.
[9] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
[10] Maag JLV. gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2. F1000Res. 2018 Sep 28;7:1576. doi: 10.12688/f1000research.16409.2.
[11] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008 Dec 29;9:559. doi: 10.1186/1471-2105-9-559.
[12] Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011 Jan 26;12:35. doi: 10.1186/1471-2105-12-35.
[13] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012 May;16(5):284-7. doi: 10.1089/omi.2011.0118
[14] Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015 Feb 15;31(4):608-9. doi: 10.1093/bioinformatics/btu684
[15] Houyun Huang. ggcor: Extended tools for correlation analysis and visualization. R package version 0.9 7. 2020. https://gitee.com/luerner/ggcor
[16] Scire J, Huisman JS, Grosu A, Angst DC, Lison A, Li J, Maathuis MH, Bonhoeffer S, Stadler T. estimateR: an R package to estimate and monitor the effective reproductive number. BMC Bioinformatics. 2023 Aug 11;24(1):310. doi: 10.1186/s12859-023-05428-4.
[17] Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 2021 Nov 5;22(6):bbab260. doi: 10.1093/bib/bbab260.
[18] Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol. 2020 Apr;17(4):214-231. doi: 10.1038/s41585-020-0288-x.
[19] Galosi AB, Palagonia E, Scarcella S, Cimadamore A, Lacetera V, Delle Fave RF, Antezza A, Dell'Atti L. Detection limits of significant prostate cancer using multiparametric MR and digital rectal examination in men with low serum PSA: Up-date of the Italian Society of Integrated Diagnostic in Urology. Arch Ital Urol Androl. 2021 Mar 22;93(1):92-100. doi: 10.4081/aiua.2021.1.92.
[20] Wei JT, Barocas D, Carlsson S, Coakley F, Eggener S, Etzioni R, Fine SW, Han M, Kim SK, Kirkby E, Konety BR, Miner M, Moses K, Nissenberg MG, Pinto PA, Salami SS, Souter L, Thompson IM, Lin DW. Early Detection of Prostate Cancer: AUA/SUO Guideline Part I: Prostate Cancer Screening. J Urol. 2023 Jul;210(1):46-53. doi: 10.1097/JU.0000000000003491. Epub 2023 Apr 25.
[21] Huang L, Xiong W, Cheng L, Li H. Bioinformatics-based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics. J Gene Med. 2024 Jan;26(1):e3590. doi: 10.1002/jgm.3590.
[22] Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med. 2023 Jan;55(1):22-31. doi: 10.1038/s12276-023-00926-0.
[23] Kondás K, Szláma G, Trexler M, Patthy L. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J Biol Chem. 2008 Aug 29;283(35):23677-84. doi: 10.1074/jbc.M803025200.
[24] Hu Y, Zheng M, Wang S, Gao L, Gou R, Liu O, Dong H, Li X, Lin B. Identification of a five-gene signature of the RGS gene family with prognostic value in ovarian cancer. Genomics. 2021 Jul;113(4):2134-2144. doi: 10.1016/j.ygeno.2021.04.012.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Wei Liu , Munkhtuya Tumurkhuu , Naranjargal Davaadorj , Tao Feng , Ling Qin , Jianlong Weng , Ganbayar Batmunkh , Bilegtsaikhan Tsolmon , Shiirevnyamba Avirmed , Lai Fu Han , Hong Zhi , Pingping Wang (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.