Eukaryotic-Specific Ribosomal Proteins: Pivotal Entities in Ribosomal Function without Corresponding Bacterial Equivalents
DOI:
https://doi.org/10.56294/saludcyt20251597Keywords:
Eukaryotic ribosomal proteins, mRNA binding, eubacteria, viral expression, eubacterial ribosomesAbstract
All organisms use a macromolecular device called the ribosome to synthesize proteins. The precise molecular intricacies, despite the significant advancements achieved in the research of the design and function of the bacterial ribosome, the mechanism that helps the eukaryotes' ribosomal and related components assemble the polypeptide properly and swiftly remains to be determined. More Ribonucleic Acid (RNA) and proteins are found in eukaryotic ribosomes than in eubacterial ribosomes. These extra components that add the ribosome's primary and secondary structures are conserved. The function of these parts should be clarified to illuminate the eukaryotic ribosome's techniques of translation and the molecular reasons behind their differences from eubacterial ribosomes. The research addresses a group of ribosomal proteins found in eukaryotes that do not have an equivalent in eubacteria. These proteins are crucial for messenger Ribonucleic Acid(mRNA) binding, nascent peptide folding, and ribosomal structure and function. It addresses how these proteins affect human illnesses and the expression of viruses and how they can serve as targets for antiviral medications.
References
1. Anisimova AS, Meerson MB, Gerashchenko MV, Kulakovskiy IV, Dmitriev SE, Gladyshev VN. Multifaceted deregulation of gene expression and protein synthesis with age. Proceedings of the National Academy of Sciences. 2020 Jul 7;117(27):15581-90.https://doi.org/10.1073/pnas.2001788117
2. Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner A, Yusupova G. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nature communications. 2019 Jun 7;10(1):2519.https://doi.org/10.1038/s41467-019-10409-4
3. Saini AK, Kumar V. Ribosome structure. InEmerging Concepts in Ribosome Structure, Biogenesis, and Function 2021 Jan 1 (pp. 15-31). Academic Press.https://doi.org/10.1016/B978-0-12-816364-1.00007-X
4. Pinel-Marie ML, Brielle R, Riffaud C, Germain-Amiot N, Polacek N, Felden B. RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus. Nature microbiology. 2021 Feb;6(2):209-20. https://doi.org/10.1038/s41564-020-00819-2
5. Li L. Modulation of Alternative Splicing Regulators During Epithelial-mesenchymal Transition in Cancer Progression (Doctoral dissertation, University of Bristol).10.7554/eLife.47678
6. Bailoni E, Partipilo M, Coenradij J, Grundel DA, Slotboom DJ, Poolman B. Minimal out-of-equilibrium metabolism for synthetic cells: a membrane perspective. ACS Synthetic Biology. 2023 Apr 7;12(4):922-46. https://pubs.acs.org/doi/10.1021/acssynbio.3c00062.
7. Timsit Y, Sergeant-Perthuis G, Bennequin D. Evolution of ribosomal protein network architectures. Scientific reports. 2021 Jan 12;11(1):625.https://doi.org/10.1038/s41598-020-80194-4
8. Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. Wiley Interdisciplinary Reviews: RNA. 2021 May;12(3):e1632. https://doi.org/10.1002/wrna.1632
9. Li S. Regulation of ribosomal proteins on viral infection. Cells. 2019 May 27;8(5):508. https://doi.org/10.3390/cells8050508
10. Dong Z, Jiang H, Liang S, Wang Y, Jiang W, Zhu C. Ribosomal protein L15 is involved in colon carcinogenesis. International journal of medical sciences. 2019 Aug 6;16(8):1132.10.7150/ijms.34386
11. Barandun J, Hunziker M, Vossbrinck CR, Klinge S. Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nature Microbiology. 2019 Nov;4(11):1798-804.Barandun J, Hunziker M, Vossbrinck CR, Klinge S. Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nature Microbiology. 2019 Nov;4(11):1798-804.
12. Majumdar S, Emmerich A, Krakovka S, Mandava CS, Svärd SG, Sanyal S. Insights into translocation mechanism and ribosome evolution from cryo-EM structures of translocation intermediates of Giardia intestinalis. Nucleic acids research. 2023 Apr 24;51(7):3436-51.https://doi.org/10.1093/nar/gkad176
13. Graifer D, Malygin A, Karpova G. Hydroxylation of protein constituents of the human translation system: Structural aspects and functional assignments. Future Medicinal Chemistry. 2019 Feb 1;11(4):357-69.https://doi.org/10.4155/fmc-2018-0317
14. Rausch P, Rühlemann M, Hermes BM, Doms S, Dagan T, Dierking K, Domin H, Fraune S, Von Frieling J, Hentschel U, Heinsen FA. Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome. 2019 Dec;7:1-9.https://doi.org/10.1186/s40168-019-0743-1
15. Calvet LE, Matviienko S, Ducluzaux P. Network theory of the bacterial ribosome. Plos one. 2020 Oct 5;15(10):e0239700.https://doi.org/10.1371/journal.pone.0239700
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aitha Srividya, Anshuman Jena, Hitesh Kalra, Devanshu J. Patel, Mridula Gupta, Kailas Datkhile (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.