Characterisation of exon two of the GJB2 gene in Cubans with autosomal recessive prelingual isolated hearing loss

Authors

DOI:

https://doi.org/10.56294/saludcyt20251575

Keywords:

connexin 26, non-syndromic, deafness, autosomal recessive, gab β 2 binding protein

Abstract

INTRODUCTION: Hearing loss is the most common neurological disorder in humans. In its prelingual form, it occurs in one in every 1,000 live births. The most common type is isolated autosomal recessive hearing loss, caused mainly by pathogenic variants of the GJB2 gene. The most common of these in all populations is c.35delG, located in exon two, which encodes this gene. This mutation has been identified in heterozygosity in Cubans with hearing loss. Given its high allelic heterogeneity, Sanger sequencing is recommended to confirm the molecular diagnosis. OBJECTIVE: To characterise exon 2 of the GJB2 gene in a series of Cuban patients with autosomal recessive prelingual isolated hearing loss. MATERIAL AND METHOD: A descriptive, cross-sectional study was conducted. From 379 cases in which molecular study was performed by allele-specific PCR of the pathogenic variant c.35delG, 13 heterozygotes were selected in which deletions D13S1830 and D13S1854 of the GJB6 gene had previously been ruled out. Sanger sequencing of exon 2 was performed, for which four specific oligonucleotides were designed to amplify two overlapping fragments to ensure complete analysis of the coding region of the GJB2 gene. Given the characteristics of the c.35delG mutation, two additional primers were included to analyse the start of exon 2. Information on the identified variants was sought on the ClinVar website. The audiometric characteristics of the patients were observed. Throughout the research, the principles of human research ethics were followed. RESULTS The c.427C>T variant was identified in three individuals, while the c.94C>T mutation was found in another, and c.139G>T in a fifth. The patients presented sensorineural hearing loss with severity levels exceeding 61 dB. CONCLUSION: Three pathogenic variants were identified in the coding region of the GJB2 gene, associated with severe to profound hearing loss.

References

1. Shearer A E, Hildebrand M S, Smith RJH. Hereditary Hearing Loss and Deafness Overview. 1999 Feb 14 [Updated 2023 Jun 29]. En: Adam MP, Ardinger HH, Pagon RA, et al, editors GeneReviews® [Internet]. Seattle; 1993-2021: Seattle (WA): University of Washington; 2021 [citado 7 de marzo de 2025]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1434/

2. Nussabaum R L, McInnes R, Willard H. Thompson & Thompson Genetics in Medicine. Eight Edition. Philadelphia: Elsevier; 2015. 546 p.

3. Smith RJ, Ranum PT. Nonsyndromic Hearing Loss and Deafness, DFNA3. En: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al., editores. GeneReviews(®) [Internet]. Seattle (WA): University of Washington, Seattle; 2016 [citado 7 de marzo de 2025]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1536/

4. Van Camp G, Smith R. Hereditary Hearing Loss Homepage [Internet]. [citado 7 de marzo de 2025]. Disponible en: https://hereditaryhearingloss.org

5. Wang MH, Weng H. Genetic Test, Risk Prediction, and Counseling. Adv Exp Med Biol. 2017;1005:21–46.

6. Yu Y, Zhang J, Zhan Y, Luo G. A novel method for detecting nine hotspot mutations of deafness genes in one tube. Sci Rep. 3 de enero de 2024;14(1):454.

7. # 220290 Deafness, autosomal recessive 1A; DFNB1A [Internet]. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. 2024 [citado 25 de marzo de 2025]. Disponible en: https://omim.org/entry/220290

8. Azadegan-Dehkordi F, Ahmadi R, Koohiyan M, Hashemzadeh-Chaleshtori M. Update of spectrum c.35delG and c.-23+1G>A mutations on the GJB2 gene in individuals with autosomal recessive nonsyndromic hearing loss. Ann Hum Genet. 1 de enero de 2019;83(1):1–10.

9. Hajilari M, Sharifinya A, Khosravi T, Kianmehr A, Taziki MH, Khosravi A, et al. Frequency of c.35delG Mutation in GJB2 gene in Patients with Autosomal Recessive Non-Syndromic Hearing Loss of Five Ethnic Groups in Golestan, Iran. Int J Pediatr. 2023;11(1):17286–98.

10. Dragomir C, Ionescu AI, Savu L, Severin E. Letter to the Editor: Detection of the GJB2 gene mutations in two children with hearing impairment. Rev Romana de Medicina de Lab. 2015;23(4):495–9.

11. Koohiyan M. Genetics of Hereditary Hearing Loss in the Middle East: A Systematic Review of the Carrier Frequency of the GJB2 Mutation (35delG). Audiol Neurotol. 5 de septiembre de 2019;24(4):161–5.

12. Roblejo Balbuena H. Manual de normas y procedimientos. Servicios de genética médica en Cuba [Internet]. Havana: Editorial Ciencias Médicas; 2017 [citado 7 de marzo de 2025]. 168 p. Disponible en: www.ecimed.sld.cu/2019/06/06/manual-de-normas-y-procedimientos-servicios-de-genetica-medica-en-cuba.

13. Morales Peralta E, Arceo Alvarez M, Perdomo Chacón Y, Gómez Martínez M, Collazo Mesa T. Pathogenic variant c.35delG of the GJB2 gene associated with nonsyndromic prelingual deafness. Salud, Ciencia y Tecnología [Internet]. 2024 [citado 7 de marzo de 2025];4:766. Disponible en: https://doi.org/10.56294/ saludcyt2024766.

14. Arceo-Álvarez M, Morales-Peralta E, Perdomo-Chacón Y, Collazo-Mesa T. Deleciones GJB6-D13S1830 y GJB6-D13S1854 en pacientes con sordera prelingual no sindrómica. Revista Finlay [revista en Internet]. 2024 [citado 2025 Mar 13]; 14(3):[aprox. 5 p.]. Disponible en: https://revfinlay.sld.cu/index.php/finlay/article/view/1426.

15. Zytsar MV, Barashkov NA, Bady-Khoo MS, Shubina-Olejnik OA, Danilenko NG, Bondar AA, et al. Updated carrier rates for c.35delG (GJB2) associated with hearing loss in Russia and common c.35delG haplotypes in Siberia. BMC Med Genet. 7 de agosto de 2018;19(1):138.

16. National Center for Biotechnology Information (NCBI). ClinVar [Internet]. “GJB2”[GENE] Bethesda (MD): National Library of Medicine (US); [actualizado 2023 Oct 10; consultado 2025 Jun 20]. Disponible en: https://www.ncbi.nlm.nih.gov/clinvar/?term=%22GJB2%22[GENE]&redir=gen.

17. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Participants. JAMA [Internet]. 19 de octubre de 2024 [citado 4 de noviembre de 2024]; Disponible en: https://doi.org/10.1001/jama.2024.21972

18. Aboagye ET, Adadey SM, Wonkam-Tingang E, Amenga-Etego L, Awandare GA, Wonkam A. Global Distribution of Founder Variants Associated with Non-Syndromic Hearing Impairment. Genes [Internet]. 2023 [citado 26 de enero de 2024];14(2). Disponible en: https://doi.org/10.3390/genes14020399

19. Elsayed O, Al-Shamsi A. Mutation spectrum of non-syndromic hearing loss in the UAE, a retrospective cohort study and literature review. Mol Genet Genomic Med. 1 de noviembre de 2022;10(11):e2052.

20. Buonfiglio P, Bruque CD, Luce L, Giliberto F, Lotersztein V, Menazzi S, et al. GJB2 and GJB6 Genetic Variant Curation in an Argentinean Non-Syndromic Hearing-Impaired Cohort. Genes (Basel). 21 de octubre de 2020;11(10).

21. “GJB2”[GENE] CinVar [Internet]. [citado 19 de junio de 2025]. Disponible en: https://www.ncbi.nlm.nih.gov/clinvar/?term=%22GJB2%22[GENE]&redir=gen

22. Carranza C, Menendez I, Herrera M, Castellanos P, Amado C, Maldonado F, et al. A Mayan founder mutation is a common cause of deafness in Guatemala. Clin Genet. abril de 2016;89(4):461–5.

23. Yilmaz A. Bioinformatic Analysis of GJB2 Gene Missense Mutations. Cell Biochem Biophys. abril de 2015;71(3):1623–42.

24. Xia H, Xu H, Deng X, Yuan L, Xiong W, Yang Z, et al. Compound heterozygous GJB2 mutations associated to a consanguineous Han family with autosomal recessive non-syndromic hearing loss. Acta OtoLaryngol. 2 de agosto de 2016;136(8):782–5.

25. Moctar ECM, Riahi Z, El Hachmi H, Veten F, Meiloud G, Bonnet C, et al. Etiology and associated GJB2 mutations in Mauritanian children with non-syndromic hearing loss. Eur Arch Otorhinolaryngol. noviembre de 2016;273(11):3693–8.

26. Maxwell KN, Hart SN, Vijai J, Schrader KA, Slavin TP, Thomas T, et al. Evaluation of ACMG-Guideline-Based Variant Classification of Cancer Susceptibility and Non-Cancer-Associated Genes in Families Affected by Breast Cancer. Am J Hum Genet. 5 de mayo de 2016;98(5):801–17.

27. Tabor HK, Auer PL, Jamal SM, Chong JX, Yu JH, Gordon AS, et al. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. Am J Hum Genet. 7 de agosto de 2014;95(2):183–93.

28. Rayess HM, Weng C, Murray GS, Megerian CA, Semaan MT. Predictive factors and outcomes of cochlear implantation in patients with connexin 26 mutation: A comparative study. Am J Otolaryngol. 1 de enero de 2015;36(1):7–12.

29. Bazazzadegan N, Nikzat N, Fattahi Z, Nishimura C, Meyer N, Sahraian S, et al. The spectrum of GJB2 mutations in the Iranian population with non-syndromic hearing loss--a twelve year study. Int J Pediatr Otorhinolaryngol. agosto de 2012;76(8):1164–74.

30. de la Luz Arenas-Sordo M, Menendez I, Hernández-Zamora E, Sirmaci A, Gutiérrez-Tinajero D, McGetrick M, et al. Unique spectrum of GJB2 mutations in Mexico. Int J Pediatr Otorhinolaryngol. noviembre de 2012;76(11):1678–80.

31. Kecskeméti N, Szönyi M, Gáborján A, Küstel M, Milley GM, Süveges A, et al. Analysis of GJB2 mutations and the clinical manifestation in a large Hungarian cohort. Eur Arch Otorhinolaryngol. octubre de 2018;275(10):2441–8.

32. Leclère JC, Le Gac MS, Le Maréchal C, Ferec C, Marianowski R. GJB2 mutations: Genotypic and phenotypic correlation in a cohort of 690 hearing-impaired patients, toward a new mutation? Int J Pediatr Otorhinolaryngol. noviembre de 2017;102:80–5.

33. Dalamón V, Florencia Wernert M, Lotersztein V, Craig PO, Diamante RR, Barteik ME, et al. Identification of four novel connexin 26 mutations in non-syndromic deaf patients: genotype-phenotype analysis in moderate cases. Mol Biol Rep. diciembre de 2013;40(12):6945–55.

34. Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, et al. Prelingual Deafness: High Prevalence of a 30delG Mutation in the Connexin 26 Gene. Hum Mol Genet. 1 de noviembre de 1997;6(12):2173–7.

35. Martínez-Saucedo M, Rivera-Vega M del R, Gonzalez--Huerta Luz M, Urueta-Cuellar H, Toral-López J, Berruecos-Villalobos P, et al. Two novel compound heterozygous families with a trimutation in the GJB2 gene causing sensorineural hearing loss. Int J Pediatr Otorhinolaryngol. diciembre de 2015;79(12):2295–9.

36. Aboagye ET, Adadey SM, Esoh K, Jonas M, de Kock C, Amenga-Etego L, et al. Age Estimate of GJB2-p.(Arg143Trp) Founder Variant in Hearing Impairment in Ghana, Suggests Multiple Independent Origins across Populations. Biology (Basel) [Internet]. 21 de marzo de 2022;11(3). Disponible en: https://doi.org/10.3390/biology11030476

37. Smith RJ, Azaiez H, Booth K. GJB2-Related Autosomal Recessive Nonsyndromic Hearing Loss. En: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editores. GeneReviews(®). Seattle (WA): University of Washington, Seattle; 1993.

38. Namba K, Mutai H, Matsunaga T, Kaneko H. Structural basis for pathogenic variants of GJB2 and hearing levels of patients with hearing loss. BMC Res Notes. 10 de mayo de 2024;17(1):131.

39. Menéndez I, del Castillo I, Carrillo B, Villamar M, Ponce de León M, Uriarte A, et al. Mutaciones del gen de la conexina 26 (GJB2) en familias cubanas con sorderas no sindrómicas autosómicas recesivas. Rev Cubana Invest Bioméd [Internet]. 2001;20:167–72.

Downloads

Published

2025-10-06

How to Cite

1.
Morales Peralta E, Arceo Alvarez M, Perdomo Chacón Y, Collazo Mesa T, Beyer K. Characterisation of exon two of the GJB2 gene in Cubans with autosomal recessive prelingual isolated hearing loss. Salud, Ciencia y Tecnología [Internet]. 2025 Oct. 6 [cited 2025 Oct. 11];5:1575. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1575