Predictive Technology in Maternal Health: artificial Intelligence Models for the Identification of Obstetric Risks

Authors

DOI:

https://doi.org/10.56294/saludcyt20251531

Keywords:

Artificial intelligence, Obstetric complications, Risk prediction, Preeclampsia, Neural networks, Maternal-fetal care

Abstract

Introduction: obstetric complications are one of the leading causes of maternal morbidity and mortality worldwide. Artificial intelligence (AI) has proven to be an effective tool for predicting obstetric risks, enabling timely interventions. However, its implementation in countries with limited healthcare infrastructure remains a challenge.
Methods: a predictive AI-based model was developed using clinical data from 2 500 pregnant women treated in Ecuadorian hospitals. Logistic regression, neural networks, and random forest algorithms were evaluated to predict complications such as preeclampsia, preterm birth, and gestational diabetes. Cross-validation techniques and inferential statistical analyses were applied.
Results: neural networks demonstrated the best performance, with an accuracy of 92 % and an AUC-ROC of 0.94, outperforming traditional models. The main risk factors identified were high blood pressure, high body mass index, and family history.
Conclusions: aI can significantly improve the early detection of obstetric complications, especially in resource-limited settings. Implementing these models in hospital systems would help optimize maternal-fetal care and reduce maternal mortality.

References

1. Ahn K, Lee KS. Artificial intelligence in obstetrics. Obstet Gynecol Sci. 2021;65(2):113-124. https://doi.org/10.5468/ogs.21234.

2. Kim HY, Cho GJ, Kwon H. Applications of artificial intelligence in obstetrics. Ultrasonography. 2022;42(1):2-9. https://doi.org/10.14366/usg.22063.

3. Iftikhar P, Kuijpers M, Khayyat A, et al. Artificial intelligence: A new paradigm in obstetrics and gynecology. Cureus. 2020;12(1):e7124. https://doi.org/10.7759/cureus.7124.

4. Medjedović E, Stanojevic M, Jonuzović-Prošić S, et al. Artificial intelligence in maternal-fetal medicine. Technol Health Care. 2023;31(4):987-1002. https://doi.org/10.3233/thc-231482.

5. Horgan R, Nehme L, Abuhamad A. AI in obstetric ultrasound: A scoping review. Prenat Diagn. 2023;43(7):1176-1219. https://doi.org/10.1002/pd.6411.

6. Lestari D, Maulana FI, Adi PD, et al. Predicting obstetric complications using AI: A bibliometric analysis. eSmarTA. 2024;4(1):1-8. https://doi.org/10.1109/eSmarTA62850.2024.10638994.

7. Bertini A, Salas R, Chabert S, et al. Using ML to predict pregnancy complications: A systematic review. Front Bioeng Biotechnol. 2022;9(1):780389. https://doi.org/10.3389/fbioe.2021.780389.

8. Boldina YS, Ivshin A. Machine learning opportunities to predict obstetric hemorrhages. Obstet Gynecol Reprod. 2024. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.491.

9. Feduniw S, Golik D, Kajdy A, et al. Application of AI in screening for adverse perinatal outcomes. Healthcare. 2022;10(11):2164. https://doi.org/10.3390/healthcare10112164.

10. Garg S. Artificial intelligence in obstetrics: The journey so far. Int J Sci Res. 2024. https://doi.org/10.36106/ijsr/8609036.

11. Dhombres F, Bonnard J, Bailly K, et al. Contributions of AI reported in obstetrics and gynecology journals: Systematic review. J Med Internet Res. 2021;24(1):e35465. https://doi.org/10.2196/35465.

12. Chaurasia A, Curry G, Zhao Y, et al. Use of artificial intelligence in obstetric and gynecological diagnostics: A systematic review and meta-analysis. BMJ Open. 2024;14(1):e082287. https://doi.org/10.1136/bmjopen-2023-082287.

13. Gopakumar D, Nair V, Parvataneni K. An artificial intelligence approach to fetal health risk prediction. IEEE ISEC. 2023;206-207. https://doi.org/10.1109/ISEC57711.2023.10402221.

14. Behera A. Use of AI in management and identification of complications in diabetes. Clin Diabetol. 2021. https://doi.org/10.5603/DK.A2021.0007.

15. Patel DJ, Chaudhari K, Acharya N, et al. AI in obstetrics and gynecology: Transforming care and outcomes. Cureus. 2024;16:e64725. https://doi.org/10.7759/cureus.64725.

16. Bachnas MA, Andonotopo W, Dewantiningrum J, et al. Utilization of AI in 3D/4D ultrasound analysis. J Perinat Med. 2024. https://doi.org/10.1515/jpm-2024-0347.

17. McAdams RM, Green TL. Equitable AI in obstetrics, maternal–fetal medicine, and neonatology. Obstet Gynecol. 2024;143(5):627-632. https://doi.org/10.1097/AOG.0000000000005563.

18. Ngugi MJ. The role of artificial intelligence in early cancer detection. Res Invent J Public Health Pharm. 2024. https://doi.org/10.59298/rijpp/2024/321821.

19. Chaurasia A, Curry G, Zhao Y, et al. Use of artificial intelligence in obstetric and gynecological diagnostics: A protocol for a systematic review and meta-analysis. BMJ Open. 2024;14(1):e082287. https://doi.org/10.1136/bmjopen-2023-082287.

20. Gopakumar D, Nair V, Parvataneni K. An artificial intelligence approach to fetal health risk prediction. IEEE ISEC. 2023;206-207. https://doi.org/10.1109/ISEC57711.2023.10402221.

21. Novoa Mero JE, Zambrano Andrade LF, Sánchez Rodríguez JM, Zambrano Santos RO. Incidencia de complicaciones obstétricas del parto en gestantes atendidas en Hospital General Rodríguez Zambrano. Rev Cient Higía Salud. 2023;9(2). https://doi.org/10.37117/higia.v9i2.976.

Downloads

Published

2025-06-12

How to Cite

1.
Zambrano Santos RO, Elizabeth Villegas M, Castillo Merino YA, Quiroz Figueroa MS. Predictive Technology in Maternal Health: artificial Intelligence Models for the Identification of Obstetric Risks. Salud, Ciencia y Tecnología [Internet]. 2025 Jun. 12 [cited 2025 Jun. 23];5:1531. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1531