Optimization of Fault Prediction by A.I. in Industrial Equipment: analysis of the operating parameters of a Bench Grinder

Authors

DOI:

https://doi.org/10.56294/saludcyt20251505

Keywords:

AI , Predictive maintenance, Machine Learning techniques, Fault Prediction, bench grinder

Abstract

Predictive Maintenance (PM) plays a crucial role in maximizing efficiency and reducing costs associated with equipment and system maintenance in industrial companies. Recent advancements in Machine Learning (ML) have revolutionized PM by offering accurate and efficient fault prediction and maintenance planning capabilities. This research focuses on monitoring a bench grinder and observing sensors for temperature, current, angular velocity, and vibration under normal operating conditions. The objective is to predict failures based on specific variables related to the machine. To develop the system, a prototype bench was designed to subject the machine to several working scenarios, collecting real-time sensor data. Data clusters were generated for each sensor, collecting 3000 samples over 7 consecutive days without faults and another 7 days with modified bench grinder behavior. Sampling was done at a rate of 1 second. The performance of Decision Trees (DT), Support Vector Machines (SVM), Naive Bayes (NB), and K-Means + Neural Network (NN) algorithms was compared using the confusion matrix metrics. Each algorithm's performance was evaluated for RPM, current, temperature, and vibrations measures. The SVM algorithm showed the highest error for RPM with 43.5%. In contrast, all algorithms achieved minimal or zero errors for vibrations, indicating excellent performance. These findings demonstrate the potential of ML algorithms in PM for the bench grinder. The results highlight the importance of selecting appropriate algorithms for specific measurements, with vibrations exhibiting the least error across all algorithms and contributes to optimize maintenance activities in industrial settings. 

References

1. Groover 1939- MP. Fundamentals of modern manufacturing : materials, processes, and systems [Internet]. Third edition. Hoboken, NJ : J. Wiley & Sons, [2007] ©2007; Available from: https://search.library.wisc.edu/catalog/9910077765702121

2. Djurdjanovic D, Mears L, Niaki FA, Haq AU, Li L. State of the Art Review on Process, System, and Operations Control in Modern Manufacturing. J Manuf Sci Eng [Internet]. 2018 Jun 1;140(6). Available from: https://asmedigitalcollection.asme.org/manufacturingscience/article/doi/10.1115/1.4038074/366797/State-of-the-Art-Review-on-Process-System-and

3. Sreekumar MD, Chhabra M, Yadav R. Productivity in Manufacturing Industries. Int J Innov Sci Res Technol [Internet]. 2018 Oct 1;3(10). Available from: https://www.researchgate.net/publication/333817038_Productivity_in_Manufacturing_Industries/citation/download

4. Bokrantz J, Skoogh A, Berlin C, Wuest T, Stahre J. Smart Maintenance: a research agenda for industrial maintenance management. Int J Prod Econ [Internet]. 2019 Nov 1;224:107547. Available from: https://www.sciencedirect.com/science/article/pii/S0925527319303731

5. Salawu EY, Awoyemi OO, Akerekan OE, Afolalu SA, Kayode JF, Ongbali SO, et al. Impact of Maintenance on Machine Reliability: A Review. Swadesh Kumar S, editor. E3S Web Conf [Internet]. 2023 Oct 6;430:01226. Available from: https://www.e3s-conferences.org/10.1051/e3sconf/202343001226

6. Zonta T, da Costa CA, da Rosa Righi R, de Lima MJ, da Trindade ES, Li GP. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput Ind Eng [Internet]. 2020 Dec 6;150:106889. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0360835220305787

7. Pérez MÁL, Piña IB, Álvarez GV. Diseño de una metodología de mantenimiento predictivo para asegurar procesos de producción de la industria 4.0. South Florida J Dev [Internet]. 2021 May 5;2(1):1009–17. Available from: https://www.southfloridapublishing.com/ojs/index.php/jdev/article/view/197

8. Ran Y, Zhou X, Lin P, Wen Y, Deng R. A Survey of Predictive Maintenance: Systems, Purposes and Approaches [Internet]. 2019. Available from: http://arxiv.org/abs/1912.07383

9. Guerrero Cano M, Luque Sendra A, Lama Ruiz J, Antonio CR. Predictive Maintenance Using Machine Learning Techniques. 23 rd Int Congr Proj Manag Eng [Internet]. 2019 Jul 10;03–020. Available from: http://dspace.aeipro.com/xmlui/bitstream/handle/123456789/2293/AT03-020_2019.pdf?sequence=1&isAllowed=y

10. Lee WJ, Wu H, Yun H, Kim H, Jun MBG, Sutherland JW. Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data. Procedia CIRP [Internet]. 2019 Jan 1;80:506–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212827118312988

11. Leukel J, González J, Riekert M. Adoption of machine learning technology for failure prediction in industrial maintenance: A systematic review. J Manuf Syst [Internet]. 2021 Oct 1;61:87–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278612521001849

12. Matzka S. Explainable Artificial Intelligence for Predictive Maintenance Applications. In: 2020 Third International Conference on Artificial Intelligence for Industries (AI4I) [Internet]. IEEE; 2020. p. 69–74. Available from: https://ieeexplore.ieee.org/document/9253083/

13. Varghese A, Ande JRPK, Mahadasa R, Gutlapalli SS, Surarapu P. Investigation of Fault Diagnosis and Prognostics Techniques for Predictive Maintenance in Industrial Machinery. Eng Int [Internet]. 2023 Feb 27;11(1):9–26. Available from: https://abc.us.org/ojs/index.php/ei/article/view/693

14. Choudhary A, Goyal D, Shimi SL, Akula A. Condition Monitoring and Fault Diagnosis of Induction Motors: A Review. Arch Comput Methods Eng [Internet]. 2019 Sep 10;26(4):1221–38. Available from: http://link.springer.com/10.1007/s11831-018-9286-z

15. Liang X, Ali MZ, Zhang H. Induction Motors Fault Diagnosis Using Finite Element Method: A Review. IEEE Trans Ind Appl [Internet]. 2020 Mar 10;56(2):1205–17. Available from: https://ieeexplore.ieee.org/document/8930293/

16. Chen C, Lu N, Jiang B, Wang C. A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance. IEEE/CAA J Autom Sin [Internet]. 2021 Feb 1;8(2):412–22. Available from: https://ieeexplore.ieee.org/document/9317711/

17. Lima E, Gorski E, Loures EFR, Santos EAP, Deschamps F. Applying machine learning to AHP multicriteria decision making method to assets prioritization in the context of industrial maintenance 4.0. IFAC-PapersOnLine [Internet]. 2019;52(13):2152–7. Available from: https://www.sciencedirect.com/science/article/pii/S2405896319315083

18. Paredes Carrillo J, Romero Barreno C. Machine Learning Algorithms for Predictive Maintenance: A Systematic Literature Mapping. Rev Perspect [Internet]. 2025 Jan 31;7(1):31–47. Available from: http://45.184.102.148/index.php/RCP_ESPOCH/article/view/227

19. Traini E, Bruno G, D’Antonio G, Lombardi F. Machine Learning Framework for Predictive Maintenance in Milling. IFAC-PapersOnLine [Internet]. 2019 Jan 1;52(13):177–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S240589631931122X

20. Dhall D, Kaur R, Juneja M. Machine Learning: A Review of the Algorithms and Its Applications. In 2020. p. 47–63. Available from: http://link.springer.com/10.1007/978-3-030-29407-6_5

21. Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci [Internet]. 2021;2(3):160. Available from: https://doi.org/10.1007/s42979-021-00592-x

22. Wickramasinghe I, Kalutarage H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput [Internet]. 2021 Feb 9;25(3):2277–93. Available from: https://link.springer.com/10.1007/s00500-020-05297-6

23. Ahmed M, Seraj R, Islam SMS. The k-means algorithm: A comprehensive survey and performance evaluation. Electron [Internet]. 2020;9(8):1–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090372567&doi=10.3390%2Felectronics9081295&partnerID=40&md5=cc01e9ed9ff107b264bf5238614d18e9

24. Abdolrasol MGM, Hussain SMS, Ustun TS, Sarker MR, Hannan MA, Mohamed R, et al. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics [Internet]. 2021 Nov 3;10(21):2689. Available from: https://www.mdpi.com/2079-9292/10/21/2689

Downloads

Published

2025-03-18

How to Cite

1.
Gutiérrez Suquillo NR, Chamba Cruz JI, Sánchez Muyulema LM, Núñez CX, Franco Reina RC. Optimization of Fault Prediction by A.I. in Industrial Equipment: analysis of the operating parameters of a Bench Grinder. Salud, Ciencia y Tecnología [Internet]. 2025 Mar. 18 [cited 2025 Apr. 26];5:1505. Available from: https://sct.ageditor.ar/index.php/sct/article/view/1505