The future insights of AI Applications in Hematology diseases diagnosis and prognosis: Review Article
DOI:
https://doi.org/10.56294/saludcyt20251430Keywords:
Artificial intelligence+, Hematology, CBC, Blood film, Bone marrow, Coagulation, sustainable developmentAbstract
Artificial intelligence (AI) is rapidly altering the field of hematology, providing novel approaches to diagnosis, prognosis, and management of hematological illnesses. AI technologies, including machine learning (ML) and deep learning (DL), allow for the analysis of massive volumes of clinical, genetic, and imaging data, resulting in more accurate, rapid, and individualized care. In diagnostic hematology, AI is transforming blood smear analysis, bone marrow aspirations, and genomic profiling by automating cell classification, detecting anomalies, and discovering critical genetic changes associated with blood illnesses. AI-powered models are also improving prognostic skills by predicting disease progression, treatment response, and risk of relapse in illnesses such as leukemia, lymphoma, anemia, and myeloproliferative disorders. Furthermore, AI applications in precision medicine enable clinicians to adapt medicines based on individual genetic profiles, thereby increasing therapeutic success and reducing unwanted effects. The combination of AI and modern technology such as wearable health monitors and real-time diagnostic tools promises to improve patient management by providing proactive care via continuous monitoring and adaptive treatment options. As AI develops, it has enormous potential in hematology, enabling early identification, optimizing treatment regimens, and ultimately improving patient survival and quality of life. This study investigates the future implications of AI applications in hematology, emphasizing their revolutionary impact on diagnosis, prognosis, and individualized treatment techniques.
References
1. Radakovich N, Nagy M, Nazha A. Artificial Intelligence in Hematology: Current Challenges and Opportunities. Curr Hematol Malig Rep. 2020 Jun;15(3):203-210. doi: 10.1007/s11899-020-00575-4. PMID: 32239350.
Rösler W, Altenbuchinger M, Baeßler B, Beissbarth T, Beutel G, Bock R, et al. An overview and a roadmap for artificial intelligence in hematology and oncology. J Cancer Res Clin Oncol. 2023 Aug;149(10):7997-8006. doi: 10.1007/s00432-023-04667-5. Epub 2023 Mar 15. PMID: 36920563; PMCID: PMC10374829.
2. Kather JN. Artificial intelligence in oncology: chances and pitfalls. J Cancer Res Clin Oncol. 2023 Aug;149(10):7995-7996. doi: 10.1007/s00432-023-04666-6. Epub 2023 Mar 15. PMID: 36920564; PMCID: PMC10374782.
3. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020 May;111(5):1452-1460. doi: 10.1111/cas.14377. Epub 2020 Mar 21. PMID: 32133724; PMCID: PMC7226189.
4. Alanzi T, Alanazi F, Mashhour B, Altalhi R, Alghamdi A, Al Shubbar M. Surveying Hematologists' Perceptions and Readiness to Embrace Artificial Intelligence in Diagnosis and Treatment Decision-Making. Cureus. 2023 Nov 26;15(11):e49462. doi: 10.7759/cureus.49462. PMID: 38152821; PMCID: PMC10751460.
5. Mohammed EA, Mohamed MM, Far BH, Naugler C. Peripheral blood smear image analysis: A comprehensive review. J Pathol Inform. 2014 Mar 28;5(1):9. doi: 10.4103/2153-3539.129442. PMID: 24843821; PMCID: PMC4023032.
6. KATZ, Ben Zion, et al. A Novel Approach to Blood Smear Analysis Based on Specimen Topology: Implications for Human and Artificial Intelligence Decision Making. Blood, 2020, 136: 8-9.
7. Cheng W, Liu J, Wang C, Jiang R, Jiang M, Kong F. Application of image recognition technology in pathological diagnosis of blood smears. Clin Exp Med. 2024 Aug 6;24(1):181. doi: 10.1007/s10238-024-01379-z. PMID: 39105953; PMCID: PMC11303489.
8. Shams UA, Javed I, Fizan M, Shah AR, Mustafa G, Zubair M, Massoud Y, Mehmood MQ, Naveed MA. Bio-net dataset: AI-based diagnostic solutions using peripheral blood smear images. Blood Cells Mol Dis. 2024 Mar;105:102823. doi: 10.1016/j.bcmd.2024.102823. Epub 2024 Jan 4. PMID: 38241949.
9. van Eekelen L, Litjens G, Hebeda KM. Artificial Intelligence in Bone Marrow Histological Diagnostics: Potential Applications and Challenges. Pathobiology. 2024;91(1):8-17. doi: 10.1159/000529701. Epub 2023 Feb 15. PMID: 36791682; PMCID: PMC10937040.
10. Ghete T, Kock F, Pontones M, Pfrang D, Westphal M, Höfener H, Metzler M. Models for the marrow: A comprehensive review of AI-based cell classification methods and malignancy detection in bone marrow aspirate smears. Hemasphere. 2024 Dec 3;8(12):e70048. doi: 10.1002/hem3.70048. PMID: 39629240; PMCID: PMC11612571.
11. Fervers P, Fervers F, Kottlors J, Lohneis P, Pollman-Schweckhorst P, Zaytoun H, et al. Feasibility of artificial intelligence-supported assessment of bone marrow infiltration using dual-energy computed tomography in patients with evidence of monoclonal protein - a retrospective observational study. Eur Radiol. 2022 May;32(5):2901-2911. doi: 10.1007/s00330-021-08419-2. Epub 2021 Dec 18. PMID: 34921619; PMCID: PMC9038860.
12. Tang G, Fu X, Wang Z, Chen M. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow. Acta Cytol. 2021;65(4):354-357. doi: 10.1159/000518382. Epub 2021 Jul 20. PMID: 34350848.
13. Sachpekidis C, Enqvist O, Ulén J, Kopp-Schneider A, Pan L, Jauch A, Hajiyianni M, et al. Application of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma. Eur J Nucl Med Mol Imaging. 2023 Oct;50(12):3697-3708. doi: 10.1007/s00259-023-06339-5. Epub 2023 Jul 26. PMID: 37493665; PMCID: PMC10547616.
14. Bagg A, Raess PW, Rund D, Bhattacharyya S, Wiszniewska J, Horowitz A, Jengehino D, Fan G, Huynh M, Sanogo A, Avivi I, Katz BZ. Performance Evaluation of a Novel Artificial Intelligence-Assisted Digital Microscopy System for the Routine Analysis of Bone Marrow Aspirates. Mod Pathol. 2024 Sep;37(9):100542. doi: 10.1016/j.modpat.2024.100542. Epub 2024 Jun 17. PMID: 38897451.
15. Wang R, Tang LV, Hu Y. Genetic factors, risk prediction and AI application of thrombotic diseases. Exp Hematol Oncol. 2024 Aug 27;13(1):89. doi: 10.1186/s40164-024-00555-x. PMID: 39192370; PMCID: PMC11348605.
16. Rashidi HH, Bowers KA, Reyes Gil M. Machine learning in the coagulation and hemostasis arena: an overview and evaluation of methods, review of literature, and future directions. J Thromb Haemost. 2023 Apr;21(4):728-743. doi: 10.1016/j.jtha.2022.12.019. Epub 2022 Dec 28. PMID: 36696218.
17. Mohammadi Aria M, Erten A, Yalcin O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front Bioeng Biotechnol. 2019 Dec 11;7:395. doi: 10.3389/fbioe.2019.00395. PMID: 31921804; PMCID: PMC6917661.
18. Wang W, Zeng W, Yang S. A stacked machine learning-based classification model for endometriosis and adenomyosis: a retrospective cohort study utilizing peripheral blood and coagulation markers. Front Digit Health. 2024 Sep 10;6:1463419. doi: 10.3389/fdgth.2024.1463419. PMID: 39347446; PMCID: PMC11428011.
19. Guo K, Fu X, Zhang H, Wang M, Hong S, Ma S. Predicting the postoperative blood coagulation state of children with congenital heart disease by machine learning based on real-world data. Transl Pediatr. 2021 Jan;10(1):33-43. doi: 10.21037/tp-20-238. PMID: 33633935; PMCID: PMC7882284.
20. Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford). 2020 Jan 1;2020:baaa010. doi: 10.1093/database/baaa010. PMID: 32185396; PMCID: PMC7078068.
21. Lococo F, Ghaly G, Chiappetta M, Flamini S, Evangelista J, Bria E, et al. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. Cancers (Basel). 2024 May 10;16(10):1832. doi: 10.3390/cancers16101832. PMID: 38791910; PMCID: PMC11119930.
22. Fawaz A, Ferraresi A, Isidoro C. Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making. J Pers Med. 2023 Nov 10;13(11):1590. doi: 10.3390/jpm13111590. PMID: 38003905; PMCID: PMC10672164.
23. Giri AK, Ianevski A. High-throughput screening for drug discovery targeting the cancer cell-microenvironment interactions in hematological cancers. Expert Opin Drug Discov. 2022 Feb;17(2):181-190. doi: 10.1080/17460441.2022.1991306. Epub 2021 Nov 8. PMID: 34743621.
24. Singh K, Singh A. Artificial intelligence in hematology: A critical perspective. J Clin Exp Hematol. 2024;3(1):60-66.
25. Wang SX, Huang ZF, Li J, Wu Y, Du J, Li T. Optimization of diagnosis and treatment of hematological diseases via artificial intelligence. Front Med (Lausanne). 2024 Nov 7;11:1487234. doi: 10.3389/fmed.2024.1487234. PMID: 39574909; PMCID: PMC11578717.
26. Zini G. Artificial intelligence in hematology. Hematology. 2005 Oct;10(5):393-400. doi: 10.1080/10245330410001727055. PMID: 16203606.
27. Radakovich N, Nagy M, Nazha A. Artificial Intelligence in Hematology: Current Challenges and Opportunities. Curr Hematol Malig Rep. 2020 Jun;15(3):203-210. doi: 10.1007/s11899-020-00575-4. PMID: 32239350.
28. Garg H, Kashif M, Sharma P, Singhal N. Innovating Global Health With Smart Technology to Achieve Sustainable Development. In: Driving Global Health and Sustainable Development Goals With Smart Technology. IGI Global Scientific Publishing, 2025. p. 11-36.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hisham Ali Waggiallah, Abdulkareem Al-Garni, Aisha Ali M Ghazwani, Abdulkarim S. Bin Shaya, Humood Al Shmrany, Yousif Elmosaad (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.