The role of soluble CD137 in development of liver cirrhosis among hepatitis B virus infected individuals
DOI:
https://doi.org/10.56294/saludcyt20251391Keywords:
Soluble CD137, HBV, Liver cirrhosis, cytokinesAbstract
Introduction: Viral and tumor management are mediated by the production of CD137 as a co-receptor for T cells. Objective: The purpose of the research is to examine the link between soluble CD137 and the development of liver cirrhosis in HBV-infected people. Methods: Ninety individuals were recruited. A questionnaire was used to collect age and gender information. The serum quantities of soluble CD137, TNF-α, IFN-γ, IL-6, and IL-10 in the patients were measured using the ELISA technique. Real-Time-PCR was used to calculate the number of HBV DNA copies (viral load). HBV genotypes were determined using PCR, AST, and ALT levels were determined using a Mindary BS 120TM chemical auto-analyzer. Result: The study found significant positive associations between CD137 levels and TNF-γ (P=0.014/R=0.258) and IFN- (P=0.019/R=0.246), but not with IL-6 (P=0.579/R=0.059). There were no significant negative correlations between soluble CD137 levels and viral load (P=0.495/R=-0.073), IL-10 (P=0.474/R=-0.076), AST (P=0.140/R=-0.157), or ALT (P=0.140/R=-0.111). The highest mean of CD137 was detected in patients with pure genotype D, and the concentration of CD137 dropped as viral load increased. Conclusion: The considerable positive correlations of soluble CD137 with (TNFα- and IFN-γ) and the positive correlation with (IL-6) along with the negative correlations with viral load, AST, ALT, and IL-10 may indicate that CD137 has a beneficial effect on the prognosis of HBV infection. There was significant influence of a specific HBV genotype on CD137 expression.
References
Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol. 2022 Jan;22(1):19-32. doi: 10.1038/s41577-021-00549-4.
2. Tu T, Douglas MW. Hepatitis B Virus Infection: From Diagnostics to Treatments. Viruses. 2020 Nov 30;12(12):1366. doi: 10.3390/v12121366.
3. Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol. 2022 Apr 27;13:867189. doi: 10.3389/fimmu.2022.867189.
4. Puigdelloses M, Garcia-Moure M, Labiano S, Laspidea V, Gonzalez-Huarriz M, Zalacain M, et al. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. J Immunother Cancer. 2021 Jul;9(7):e002644. doi: 10.1136/jitc-2021-002644.
5. So T, Ishii N. The TNF-TNFR Family of Co-signal Molecules. Adv Exp Med Biol. 2019;1189:53-84. doi: 10.1007/978-981-32-9717-3_3.
6. Mao QF, Shang-Guan ZF, Chen HL, Huang K. Immunoregulatory role of IL-2/STAT5/CD4+CD25+Foxp3 Treg pathway in the pathogenesis of chronic osteomyelitis. Ann Transl Med. 2019 Aug;7(16):384. doi: 10.21037/atm.2019.07.45.
7. Liechti T, Roederer M. OMIP-060: 30-Parameter Flow Cytometry Panel to Assess T Cell Effector Functions and Regulatory T Cells. Cytometry A. 2019 Nov;95(11):1129-1134. doi: 10.1002/cyto.a.23853
8. Dharmadhikari B, Nickles E, Harfuddin Z, Ishak NDB, Zeng Q, Bertoletti A, Schwarz H. CD137L dendritic cells induce potent response against cancer-associated viruses and polarize human CD8+ T cells to Tc1 phenotype. Cancer Immunol Immunother. 2018 Jun;67(6):893-905. doi: 10.1007/s00262-018-2144-x.
9. Otano I, Azpilikueta A, Glez-Vaz J, Alvarez M, Medina-Echeverz J, Cortés-Domínguez I, Ortiz-de-Solorzano C, Ellmark P, Fritzell S, Hernandez-Hoyos G, Nelson MH, Ochoa MC, Bolaños E, Cuculescu D, Jaúregui P, Sanchez-Gregorio S, Etxeberria I, Rodriguez-Ruiz ME, Sanmamed MF, Teijeira Á, Berraondo P, Melero I. CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nat Commun. 2021 Dec 15;12(1):7296. doi: 10.1038/s41467-021-27613-w.
10. Harputluoglu M, Carr BI. Hepatitis B Before and After Hepatocellular Carcinoma. J Gastrointest Cancer. 2021 Dec;52(4):1206-1210. doi: 10.1007/s12029-021-00745-4.
11. Mahmud N, Fricker Z, Hubbard RA, Ioannou GN, Lewis JD, Taddei TH, Rothstein KD, Serper M, Goldberg DS, Kaplan DE. Risk Prediction Models for Post-Operative Mortality in Patients With Cirrhosis. Hepatology. 2021 Jan;73(1):204-218. doi: 10.1002/hep.31558
12. Llovet JM, Villanueva A, Marrero JA, Schwartz M, Meyer T, Galle PR, Lencioni R, Greten TF, Kudo M, Mandrekar SJ, Zhu AX, Finn RS, Roberts LR; AASLD Panel of Experts on Trial Design in HCC. Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology. 2021 Jan;73 Suppl 1:158-191. doi: 10.1002/hep.31327.
13. Pollicino T, Caminiti G. HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses. 2021 Feb 26;13(3):368. doi: 10.3390/v13030368.
14. Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, Schmidt H, et al. Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clin Cancer Res. 2017 Apr 15;23(8):1929-1936. doi: 10.1158/1078-0432.CCR-16-1272.
15. Hong JP, Reynoso GV, Andhey PS, Swain A, Turner JS, Boon ACM, et al. An Agonistic Anti-CD137 Antibody Disrupts Lymphoid Follicle Structure and T-Cell-Dependent Antibody Responses. Cell Rep Med. 2020 Jun 23;1(3):100035. doi: 10.1016/j.xcrm.2020.100035.
16. Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother. 2016 Oct;65(10):1243-8. doi: 10.1007/s00262-016-1829-2.
17. Said EA, Al-Reesi I, Al-Shizawi N, Jaju S, Al-Balushi MS, Koh CY, Al-Jabri AA, Jeyaseelan L. Defining IL-6 levels in healthy individuals: A meta-analysis. J Med Virol. 2021 Jun;93(6):3915-3924. doi: 10.1002/jmv.26654.
18. Borden EC. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019 Mar;18(3):219-234. doi: 10.1038/s41573-018-0011-2.
19. Pincus MR, Tierno PM, Gleeson E, Bowne WB, Bluth MH. Evaluation of liver function. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods. 23rd ed. St Louis, MO: Elsevier; 2017:chap 21.
20. Wang H, Wang L, Chi PD, Wang WD, Chen XQ, Geng QR, Xia ZJ, Lu Y. High level of interleukin-10 in serum predicts poor prognosis in multiple myeloma. Br J Cancer. 2016 Feb 16;114(4):463-8. doi: 10.1038/bjc.2016.11.
21. Li G, Wu W, Zhang X, Huang Y, Wen Y, Li X, Gao R. Serum levels of tumor necrosis factor alpha in patients with IgA nephropathy are closely associated with disease severity. BMC Nephrol. 2018 Nov 14;19(1):326. doi: 10.1186/s12882-018-1069-0.
22. Lynch DR, Hauser L, McCormick A, Wells M, Dong YN, McCormack S, et al. Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich Ataxia. Ann Clin Transl Neurol. 2019 Feb 27;6(3):546-553. doi: 10.1002/acn3.731.
23. Stoll A, Bruns H, Fuchs M, Völkl S, Nimmerjahn F, Kunz M, Peipp M, Mackensen A, Mougiakakos D. CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia. 2021 Dec;35(12):3482-3496. doi: 10.1038/s41375-021-01287-1.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mudathir Abdelshafea Abdelkareem Abakar, Shamsoun Khamis Kafi, Rania Saad Suliman, Aisha Ali M Ghazwani, Humood Al Shmrany, Ghfren S. Aloraini, Ahmed M. Hjazi, Abdullah A. Alqasem, Abdulkareem Al-Garni, Hisham Ali Waggiallah (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.